RESUMO
BACKGROUND: Currently, there is no research available on the prognosis, potential effect and therapeutic value of USP31 in clear cell renal cell carcinoma (ccRCC). To address this gap, the present study aimed to shed light on its potential roles and possible mechanisms in ccRCC. METHODS: R software was utilized to conduct bioinformatics analyses with the data derived from The Cancer Genome Atlas (i.e. KIRC) and Gene Expression Omnibus datasets. The expression of USP31 in ccRCC was validated by a PCR. The independent prognostic ability of USP31 was evaluated by Cox regression analysis. We conducted gene set enrichment analysis (GSEA) to explore the potential USP31-related pathways. We also discussed the relationships between USP31 and immunity, by predicting its possible upstream transcription factors (TFs) by ChEA3. RESULTS: In ccRCC, USP31 demonstrated a high level of expression and this increased expression was correlated with a poor prognosis (p < 0.05). Through univariate and multivariate Cox regression analysis, USP31 was identified as an independent prognostic factor for ccRCC (p < 0.05). Furthermore, eight USP31-related pathways were identified by GSEA (p < 0.05). Moreover, USP31 was found to be associated with microsatellite instability, tumor microenvironment, a variety of immune cells and immune checkpoints and immune infiltration (p < 0.05). Additionally, Patients with high USP31 expression in ccRCC were shown to have better curative effects after immunotherapy (p < 0.05). Finally, we found that AR, USF1, MXI1 and CLOCK could be the potential upstream TFs of USP31. CONCLUSIONS: USP31 could serve as a potential biomarker for predicting both prognosis and immune responses, revealing its potential mechanisms of TF-USP31 mRNA networks in ccRCC.
Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Biomarcadores , Neoplasias Renais/genética , Neoplasias Renais/terapia , Imunidade , RNA , Microambiente Tumoral/genética , Proteases Específicas de UbiquitinaRESUMO
Advanced renal cell carcinoma (RCC) poses a threat to patient survival. Epigenetic remodelling is the pathogenesis of renal cancer. Histone demethylase 4B (KDM4B) is overexpressed in many cancers through various pathways. However, the role of KDM4B in clear cell renal carcinoma has not yet been elucidated. The differential expression of KDM4B was first verified by analysing public databases. The expression of KDM4B in fresh tissues and pathology slides was further analysed by western blotting and immunohistochemical staining. KDM4B overexpression and knockdown cell lines were also established. Cell Counting Kit-8 (CCK-8) assay was used to detect cell growth. Transwell assays were performed to assess cell migration. Xenografts were used to evaluate tumour growth and metastasis in vivo. Finally, KDM4B expression levels associated with copy number variation (CNV) and cell cycle stage were evaluated based on single-cell RNA sequencing data. KDM4B was expressed at higher levels in tumour tissues than in the adjacent normal tissues. High levels of KDM4B are associated with worse pathological features and poorer prognosis. KDM4B also promotes cell proliferation and migration in vitro, as well as tumour growth and metastasis in vivo. Tumour cells with high KDM4B expression exhibited higher CNV levels and a greater proportion of cells in the G1/S transition phase. Our results confirm that KDM4B promotes the progression of clear cell renal carcinoma, is correlated with poor prognosis, and may be related to high levels of CNV and cell cycle progression.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Variações do Número de Cópias de DNA , Histona Desmetilases/genética , Prognóstico , Linhagem Celular Tumoral , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação de DNA , Proliferação de Células , Neoplasias Renais/genética , Ciclo Celular/genéticaRESUMO
A Monte Carlo (MC) method was introduced into a state-of-the-art model used to analyse small-angle X-ray scattering (SAXS) data of SBA-15, an ordered mesoporous material with many applications. With this new procedure, referred to herein as the SBA-15+MC model, it is possible to retrieve the size distribution of the mesopores, D(r), in a free modelling approach. To achieve this, two main points were addressed: (i) based on previous implementations, the method was adapted to work with long core-shell cylinders; (ii) since the MC model requires longer processing times, strategies to speed up the calculations were developed, which included a simplified version of the original model used to analyse SAXS data of SBA-15 (referred to as the SBA-15 model) as well as the determination of several structural features from the SAXS curve prior to the fit. The new model was validated with simulated data and later used to fit experimental SAXS curves of SBA-15. The obtained results show that the SBA-15 model only works well because the mesopore size distribution of SBA-15 is narrow, whereas the new approach can be successfully used in cases where D(r) is wider and/or has a more complex profile, such as SBA-15 with expanded mesopores. Even though a specific SAXS example was chosen to prove the model, the strategies presented herein are general and suitable for inclusion in other models aimed at the analysis of SBA-15 and similar ordered mesoporous materials.