Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transl Psychiatry ; 12(1): 363, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064829

RESUMO

Brodmann Area 46 (BA46) has long been regarded as a hotspot of disease pathology in individuals with schizophrenia (SCH) and major depressive disorder (MDD). Pyramidal neurons in layer III of the Brodmann Area 46 (BA46) project to other cortical regions and play a fundamental role in corticocortical and thalamocortical circuits. The AutoCUTS-LM pipeline was used to study the 3-dimensional structural morphology and spatial organization of pyramidal cells. Using quantitative light microscopy, we used stereology to calculate the entire volume of layer III in BA46 and the total number and density of pyramidal cells. Volume tensors estimated by the planar rotator quantified the volume, shape, and nucleus displacement of pyramidal cells. All of these assessments were carried out in four groups of subjects: controls (C, n = 10), SCH (n = 10), MDD (n = 8), and suicide subjects with a history of depression (SU, n = 11). SCH subjects had a significantly lower somal volume, total number, and density of pyramidal neurons when compared to C and tended to show a volume reduction in layer III of BA46. When comparing MDD subjects with C, the measured parameters were inclined to follow SCH, although there was only a significant reduction in pyramidal total cell number. While no morphometric differences were observed between SU and MDD, SU had a significantly higher total number of pyramidal cells and nucleus displacement than SCH. Finally, no differences in the spatial organization of pyramidal cells were found among groups. These results suggest that despite significant morphological alterations in layer III of BA46, which may impair prefrontal connections in people with SCH and MDD, the spatial organization of pyramidal cells remains the same across the four groups and suggests no defects in neuronal migration. The increased understanding of pyramidal cell biology may provide the cellular basis for symptoms and neuroimaging observations in SCH and MDD patients.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Suicídio , Depressão , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Humanos , Córtex Pré-Frontal/patologia , Células Piramidais/patologia , Esquizofrenia/patologia
2.
Commun Biol ; 4(1): 1030, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475516

RESUMO

Techniques involving three-dimensional (3D) tissue structure reconstruction and analysis provide a better understanding of changes in molecules and function. We have developed AutoCUTS-LM, an automated system that allows the latest advances in 3D tissue reconstruction and cellular analysis developments using light microscopy on various tissues, including archived tissue. The workflow in this paper involved advanced tissue sampling methods of the human cerebral cortex, an automated serial section collection system, digital tissue library, cell detection using convolution neural network, 3D cell reconstruction, and advanced analysis. Our results demonstrated the detailed structure of pyramidal cells (number, volume, diameter, sphericity and orientation) and their 3D spatial organization are arranged in a columnar structure. The pipeline of these combined techniques provides a detailed analysis of tissues and cells in biology and pathology.


Assuntos
Córtex Cerebral/anatomia & histologia , Imageamento Tridimensional/métodos , Microtomia , Humanos , Microscopia , Microscopia Eletrônica
3.
Sci China Life Sci ; 63(2): 171-179, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31625022

RESUMO

Three-dimensional electron microscopy (3D-EM) has attracted considerable attention because of its ability to provide detailed information with respect to developmental analysis. However, large-scale high-resolution 3D reconstruction of biological samples remains challenging. Herein, we present a 3D view of a Picea wilsonii Mast. pollen grain with 100 nm axial and 38.57 nm lateral resolution using AutoCUTS-SEM (automatic collector of ultrathin sections-scanning electron microscopy). We established a library of 3,127 100 nm thick serial sections of pollen grains for preservation and observation, demonstrating that the protocol can be used to analyze large-volume samples. After obtaining the SEM images, we reconstructed an entire pollen grain comprising 734 serial sections. The images produced by 3D reconstruction clearly revealed the main components of the P. wilsonii pollen grain, i.e., two sacci and pollen corpus, tube cell, generative cell, and two degenerated prothallial cells, and their internal organization. In addition, we performed a quantitative analysis of the different pollen grain cells, including sacci, and found that there were 202 connections within a saccus SEM image. Thus, for the first time, this study provided a global 3D view of the entire pollen grain, which will be useful for analyzing pollen development and growth.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Picea/metabolismo , Pólen/metabolismo , Secções Congeladas , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA