Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291795

RESUMO

With high current density, the intense near-electrode CO2 reduction reaction (CO2RR) will cause the concentration gradients of bicarbonate (HCO3-) and hydroxyl (OH-) ions, which affect the selectivity of high-value C2+ products of the CO2RR. In this work, we simulated the near-electrode concentration gradients of electrolyte species with different porous Cu-based CLs (catalyst layers) of GDE (gas diffusion electrode) by COMSOL Multiphysics. The higher porosity CL exhibits a better buffer ability of local alkalinity while ensuring a sufficient supply of H+ and local CO2 concentration. Subsequently, the different porosity CLs were prepared by vacuum-thermal evaporation with different evaporation rate. Structural characterizations and liquid permeability tests confirm the role of the porous CL structure in optimizing concentration gradients. As a result, the high-porosity CL (Cu-HP) exhibits a higher C2+ Faraday efficiency (FE) of ∼79.61% at 500 mA cm-2 under 1 M KHCO3, far more than the FEC2+ ≈ 38.20% with the low-porosity sample (Cu-LP).

2.
Cytotherapy ; 26(6): 616-631, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38483361

RESUMO

BACKGROUND AIMS: Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, offer groundbreaking therapeutic potential for degenerative diseases and cellular repair. Despite their significance, a comprehensive bibliometric analysis in this field, particularly in relation to age-related macular degeneration (AMD), is yet to be conducted. This study aims to map the foundational and emerging areas in stem cell and AMD research through bibliometric analysis. METHODS: This study analyzed articles and reviews on stem cells and AMD from 2000 to 2022, sourced from the Web of Science Core Collection. We used VOSviewer and CiteSpace for analysis and visualization of data pertaining to countries, institutions, authors, journals, references and key words. Statistical analyses were conducted using R language and Microsoft Excel 365. RESULTS: In total, 539 publications were included, indicating an increase in global literature on stem cells and AMD from 2000 to 2022. The USA was the leading contributor, with 239 papers and the highest H-index, also the USA had the highest average citation rate per article (59.82). Notably, 50% of the top 10 institutions were from the USA, with the University of California system being the most productive. Key authors included Masayo Takahashi, Michiko Mandai, Dennis Clegg, Pete J. Coffey, Boris Stanzel, and Budd A. Tucker. Investigative Ophthalmology & Visual Science published the majority of relevant papers (n = 27). Key words like "clinical trial," "stem cell therapy," "retinal organoid," and "retinal progenitor cells" were predominant. CONCLUSIONS: Research on stem cells and AMD has grown significantly, highlighting the need for increased global cooperation. Current research prioritizes the relationship between "ipsc," "induced pluripotent stem cell," "cell culture," and "human embryonic stem cell." As stem cell culture and safety have advanced, focus has shifted to prognosis and complications post-transplantation, signifying the movement of stem cell research from labs to clinical settings.


Assuntos
Bibliometria , Degeneração Macular , Transplante de Células-Tronco , Humanos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Degeneração Macular/terapia , Transplante de Células-Tronco/métodos
3.
Chemistry ; 30(36): e202400817, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38654445

RESUMO

Luminescent organometallic complexes of earth-abundant copper(I) have long been studied in organic light-emitting diodes (OLED). Particularly, Cu(I)-based carbene-metal-amide (CMA) complexes have recently emerged as promising organometallic emitters. However, blue-emitting Cu(I) CMA complexes have been rarely reported. Here we constructed two blue-emitting Cu(I) CMA emitters, MAC*-Cu-CF3Cz and MAC*-Cu-2CF3Cz, by introducing one or two CF3 substitutes into carbazole ligands. Both complexes exhibited high thermal stability and blue emission colors. Moreover, two complexes exhibited different emission origins rooting from different donor ligands: a distinct thermally activated delayed fluorescence (TADF) from ligand-to-ligand charge transfer excited states for MAC*-Cu-CF3Cz or a dominant phosphorescence nature from local triplet excited state of the carbazole ligand for MAC*-Cu-2CF3Cz. Inspiringly, MAC*-Cu-CF3Cz had high photoluminescence quantum yields of up to 94 % and short emission lifetimes of down to 1.2 µs in doped films, accompanied by relatively high radiative rates in the 105 s-1 order. The resultant vacuum-deposited OLEDs based on MAC*-Cu-CF3Cz delivered pure-blue electroluminescence at 462 nm together with a high external quantum efficiency of 13.0 %.

4.
Mol Ther ; 31(1): 211-229, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35982619

RESUMO

Cell-based therapies offer an exciting and novel treatment for heart repair following myocardial infarction (MI). However, these therapies often suffer from poor cell viability and engraftment rates, which involve many factors, including the hypoxic conditions of the infarct environment. Meanwhile, vascular endothelial growth factor (VEGF) has previously been employed as a therapeutic agent to limit myocardial damage and simultaneously induce neovascularization. This study took an approach to transiently overexpress VEGF protein, in a controlled manner, by transfecting human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with VEGF mRNA prior to transplantation. The conditioning of iPSC-CMs with VEGF mRNA ultimately led to greater survival rates of the transplanted cells, which promoted a stable vascular network in the grafted region. Furthermore, bulk RNA transcriptomics data and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) and AGE-RAGE signaling pathways were significantly upregulated in the VEGF-treated iPSC-CMs group. The over-expression of VEGF from iPSC-CMs stimulated cell proliferation and partially attenuated the hypoxic environment in the infarcted area, resulting in reduced ventricular remodeling. This study provides a valuable solution for the survival of transplanted cells in tissue-engineered heart regeneration and may further promote the application of modified mRNA (modRNA) in the field of tissue engineering.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Transplante de Células-Tronco , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Ratos , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Neurol Sci ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39266808

RESUMO

BACKGROUND: Primary Meige syndrome (PMS) is a rare form of dystonia, and comparative analysis of globus pallidus internal deep brain stimulation (GPi-DBS), subthalamic nucleus deep brain stimulation (STN-DBS), and pallidotomy has been lacking. This study aims to compare the efficacy, safety, and psychiatric features of GPi-DBS, STN-DBS, and pallidotomy in patients with PMS. METHODS: This prospective cohort study was divided into three groups: GPi-DBS, STN-DBS, and pallidotomy. Clinical assessments, including motor and non-motor domains, were evaluated at baseline and at 1 year and 3 years after neurostimulation/surgery. RESULTS: Ninety-eight patients were recruited: 46 patients received GPi-DBS, 34 received STN-DBS, and 18 underwent pallidotomy. In the GPi-DBS group, the movement score of the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) improved from a mean (SE) of 13.8 (1.0) before surgery to 5.0 (0.7) (95% CI, -10.5 to -7.1; P < 0.001) at 3 years. Similarly, in the STN-DBS group, the mean (SE) score improved from 13.2 (0.8) to 3.5 (0.5) (95% CI, -10.3 to -8.1; P < 0.001) at 3 years, and in the pallidotomy group, it improved from 14.9 (1.3) to 6.0 (1.1) (95% CI, -11.3 to -6.5; P < 0.001) at 3 years. They were comparable therapeutic approaches for PMS that can improve motor function and quality of life without non-motor side effects. CONCLUSIONS: DBS and pallidotomy are safe and effective treatments for PMS, and an in-depth exploration of non-motor symptoms may be a new entry point for gaining a comprehensive understanding of the pathophysiology.

6.
Bioconjug Chem ; 34(12): 2194-2204, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748043

RESUMO

α6ß4* nicotinic acetylcholine receptor (nAChR) (* represents the possible presence of additional subunits) is mainly distributed in the central and peripheral nervous system and is associated with neurological diseases, such as neuropathic pain; however, the ability to explore its function and distribution is limited due to the lack of pharmacological tools. As one of the analogs of α-conotoxin (α-CTx) LvIC from Conus lividus, [D1G, Δ14Q]LvIC (Lv) selectively and potently blocks α6/α3ß4 nAChR (α6/α3 represents a chimera). Here, we synthesized three fluorescent analogs of Lv by connecting fluorescent molecules 6-carboxytetramethylrhodamine succinimidyl ester (6-TAMRA-SE, R), Cy3 NHS ester (Cy3, C) and BODIPY-FL NHS ester (BDP, B) to the N-terminus of the peptide and obtained Lv-R, Lv-C, and Lv-B, respectively. The potency and selectivity of three fluorescent peptides were evaluated using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes, and the potency and selectivity of Lv-B were almost maintained with the half-maximal inhibition (IC50) of 64 nM. Then, we explored the stability of Lv-B in artificial cerebrospinal fluid and stained rat brain slices with Lv-B. The results indicated that the stability of Lv-B was slightly improved compared to that of native Lv. Additionally, we detected the distribution of the α6ß4* nAChR subtype in the cerebral cortex using green fluorescently labeled peptide and fluorescence microscopy. Our findings not only provide a visualized pharmacological tool for exploring the distribution of the α6ß4* nAChR subtype in various situ tissues and organs but also extend the application of α-CTx [D1G, Δ14Q]LvIC to demonstrate the involvement of α6ß4 nAChR function in pathophysiology and pharmacology.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Ratos , Animais , Receptores Nicotínicos/química , Conotoxinas/química , Conotoxinas/farmacologia , Caramujo Conus/química , Peptídeos/química , Ésteres
7.
Nutr Cancer ; 75(10): 1892-1899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791847

RESUMO

Diverse dietary constituents, encompassing both macro- and micronutrient intakes, have established connections with various cancers, though their specific roles in cervical cancer remain unclear. This study explores dietary intake correlations among women aged 30 yrs and above diagnosed with cervical cancer (n = 215), contrasted with women without (n = 860). These populations were selected from the 1999-2018 cycle of the National Health and Nutrition Examination Survey. The research implemented the univariate analysis and the least absolute shrinkage and selection operator (LASSO) regression to estimate the association of 29 variables with cervical cancer, subsequently identifying the most pertinent variables linked to cervical cancer. Six covariates emerged as significantly associated with cervical cancer in univariate analyses (age, race, fiber, magnesium, caffeine, vitamin C) (p < 0.05). In LASSO regression, with the escalating penalty factor (λ), it was discerned that specific covariates, including age, race, fiber, and Vitamin C, consistently remained in the model. Univariate analysis and logistic LASSO regression findings suggested that diets deficient in fiber and vitamin C were related to cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Inquéritos Nutricionais , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/etiologia , Dieta/efeitos adversos , Fatores de Risco , Vitaminas , Fibras na Dieta , Ácido Ascórbico
8.
Artigo em Inglês | MEDLINE | ID: mdl-38117422

RESUMO

In diabetic patients, concomitant cardiovascular disease is the main factor contributing to their morbidity and mortality. Diabetic cardiomyopathy (DCM) is a form of cardiovascular disease associated with diabetes that can result in heart failure. Transforming growth factor-ß (TGF-ß) isoforms play a crucial role in heart remodeling and repair and are elevated and activated in myocardial disorders. Alterations in certain microRNAs (miRNA) are closely related to diabetic cardiomyopathy. One or more miRNA molecules target the majority of TGF-ß pathway components, and TGF-ß directly or via SMADs controls miRNA synthesis. Based on these interactions, this review discusses potential cross-talk between TGF-ß signaling and miRNA in DCM in order to investigate the creation of potential therapeutic targets.

9.
Genomics ; 114(1): 38-44, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839020

RESUMO

Proteus phage vB_PvuS_Pm34 (Pm34) isolated from the sewage, is a novel virus specific to Proteus vulgaris. Pm34 belonged to the family Siphovirodae with an icosahedron capsid head and a non-contractile tail. Its genome was 39,558 bp in length with a G + C content of 41.4%. Similarity analysis showed that Pm34 shared low identities of 27.6%-38.4% with any other Proteus phages, but had the 96% high identity with Proteus mirabilis AOUC-001. In the genome of Pm34, 70 open reading frames was deduced and 32 had putative functions including integrase and host lysis proteins. No tRNAs, antibiotic resistance and virulence genes were detected. Pm 34 presented a broad pH (4-8) and good temperature tolerance (<40 °C). This is the first report of the bacteriophage specific to P. vulgaris, which can enrich the knowledge of bacteriophages of Prouteus bacteria and provide the possibility for the alternative treatment of P. vulgaris infection.


Assuntos
Bacteriófagos , Siphoviridae , Bacteriófagos/genética , Genoma Viral , Genômica , Fases de Leitura Aberta , Proteus mirabilis/genética , Proteus vulgaris/genética , Siphoviridae/genética
10.
Angew Chem Int Ed Engl ; 62(42): e202309351, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37639659

RESUMO

Electrocatalytic CO2 reduction reaction (CO2 RR) to multi-carbon products (C2+ ) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+ ) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C-C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2 RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) - thus breaking the K+ solubility limit (3.5 M) - which enables a highly efficient CO2 RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+ ) can be achieved at 1400 mA.cm-2 , simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.

11.
Angew Chem Int Ed Engl ; 62(26): e202300873, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36883799

RESUMO

The slow water dissociation process in alkaline electrolyte severely limits the kinetics of HER. The orientation of H2 O is well known to affect the dissociation process, but H2 O orientation is hard to control because of its random distribution. Herein, an atomically asymmetric local electric field was designed by IrRu dizygotic single-atom sites (IrRu DSACs) to tune the H2 O adsorption configuration and orientation, thus optimizing its dissociation process. The electric field intensity of IrRu DSACs is over 4.00×1010  N/C. The ab initio molecular dynamics simulations combined with in situ Raman spectroscopy analysis on the adsorption behavior of H2 O show that the M-H bond length (M=active site) is shortened at the interface due to the strong local electric field gradient and the optimized water orientation promotes the dissociation process of interfacial water. This work provides a new way to explore the role of single atomic sites in alkaline hydrogen evolution reaction.


Assuntos
Eletricidade , Hidrogênio , Adsorção , Cinética , Água
12.
Small ; 18(32): e2203057, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35843880

RESUMO

Liquid lubricant of low affinity makes slippery coatings widely used in lubricating, anti-biofouling, anti-icing, fluid guiding, and drag reduction. Two critical challenges, however, remain in the practical application of slippery coatings consisting of liquid lubricants: (1) universality regardless of roughness and chemical composition of substrates, (2) stability of surface lubricity against evaporation. Herein, a chemical method is reported to create a universal and stable slippery lubricant-adhesive cooperated coating (SLACC) through acid catalyzed dehydration reaction between the phenolic hydroxyl of polydopamine (PDA), with universal (for challenge-1) and strong (for challenge-2) adhesion properties, and liquid-like polydimethylsiloxane (PDMS), with lubricant properties. Through overlying PDMS on PDA, a spatial gradient interpenetration of chemical combined PDA and PDMS leaving lubricant PDMS at the outermost of coating is achieved. This structure contributes to the following performances of SLACC: nearly universality suitable for 100 different abiotic or biotic substrates and stability sustainable for long-term usages, UV radiating, refrigerating, hot air drying, freeze drying, knife scratch and abrasion. This proposed strategy is envisioned anti-fouling from plane to tube and exhibits drag reduction in confined space.


Assuntos
Incrustação Biológica , Lubrificantes , Adesivos , Lubrificantes/química
13.
Drug Resist Updat ; 58: 100777, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34481195

RESUMO

Chemotherapy remains a powerful tool to eliminate malignant cells. However, the efficacy of chemotherapy is compromised by the frequent emergence of intrinsic and acquired multidrug resistance (MDR). These chemoresistance modalities are based on a multiplicity of molecular mechanisms of drug resistance, including : 1) Impaired drug uptake into cancer cells; 2) Increased expression of ATP-binding cassette efflux transporters; 3) Loss of function of pro-apoptotic factors; 4) Enhanced DNA repair capacity; 5) Qualitative or quantitative alterations of specific cellular targets; 6) Alterations that allow cancer cells to tolerate adverse or stressful conditions; 7) Increased biotransformation or metabolism of anticancer drugs to less active or completely inactive metabolites; and 8) Intracellular and intercellular drug sequestration in well-defined organelles away from the cellular target. Hence, one of the major aims of cancer research is to develop novel strategies to overcome cancer drug resistance. Over the last decades, nanomedicine, which focuses on targeted delivery of therapeutic drugs into tumor tissues using nano-sized formulations, has emerged as a promising tool for cancer treatment. Therefore, nanomedicine has been introduced as a reliable approach to improve treatment efficacy and minimize detrimental adverse effects as well as overcome cancer drug resistance. With rationally designed strategies including passively targeted delivery, actively targeted delivery, delivery of multidrug combinations, as well as multimodal combination therapy, nanomedicine paves the way towards efficacious cancer treatment and hold great promise in overcoming cancer drug resistance. Herein, we review the recent progress of nanomaterials used in medicine, including liposomal nanoparticles, polymeric nanoparticles, inorganic nanoparticles and hybrid nanoparticles, to surmount cancer multidrug resistance. Finally, the future perspectives of the application of nanomedicine to reverse cancer drug resistance will be addressed.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
14.
Mar Drugs ; 20(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35323499

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) is widely distributed in the central and peripheral nervous systems and is closely related to a variety of nervous system diseases and inflammatory responses. The α7 nAChR subtype plays a vital role in the cholinergic anti-inflammatory pathway. In vivo, ACh released from nerve endings stimulates α7 nAChR on macrophages to regulate the NF-κB and JAK2/STAT3 signaling pathways, thereby inhibiting the production and release of downstream proinflammatory cytokines and chemokines. Despite a considerable level of recent research on α7 nAChR-mediated immune responses, much is still unknown. In this study, we used an agonist (PNU282987) and antagonists (MLA and α-conotoxin [A10L]PnIA) of α7 nAChR as pharmacological tools to identify the molecular mechanism of the α7 nAChR-mediated cholinergic anti-inflammatory pathway in RAW264.7 mouse macrophages. The results of quantitative PCR, ELISAs, and transcriptome analysis were combined to clarify the function of α7 nAChR regulation in the inflammatory response. Our findings indicate that the agonist PNU282987 significantly reduced the expression of the IL-6 gene and protein in inflammatory macrophages to attenuate the inflammatory response, but the antagonists MLA and α-conotoxin [A10L]PnIA had the opposite effects. Neither the agonist nor antagonists of α7 nAChR changed the expression level of the α7 nAChR subunit gene; they only regulated receptor function. This study provides a reference and scientific basis for the discovery of novel α7 nAChR agonists and their anti-inflammatory applications in the future.


Assuntos
Aconitina/análogos & derivados , Anti-Inflamatórios/farmacologia , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Conotoxinas/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Aconitina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Células RAW 264.7 , Receptor Nicotínico de Acetilcolina alfa7/genética
15.
Mar Drugs ; 20(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005514

RESUMO

Neuronal nicotinic acetylcholine receptors (nAChRs) are important ion channel membrane proteins that are widely distributed in the central nervous system (CNS) and peripheral nervous system (PNS). As an important member, α3ß4 nAChRs are related to pain sensation in PNS and nicotine addiction in CNS. However, research related to the α3ß4 nAChRs is greatly limited by the lack of subtype-selective pharmacological tools. The α-conotoxin (α-CTx) TxID from the marine cone snail, Conus textile, is a selective α3ß4 nAChR antagonist with relatively high potency. In this study, a fluorescent dye (5-TAMRA SE) was used to label TxID on the N-terminus of α-CTx TxID, and pure TxID-F (fluorescent analogue of TxID) was obtained by HPLC. At the same time, the potency and selectivity of TxID-F were detected by high-performance liquid chromatography (HPLC). Additionally, the potency and selectivity of TxID-F were determined by using a two-electrode voltage-clamp technique on various nAChRs expressed in the Xenopus oocyte expression system. The results obtained by electrophysiology showed that TxID-F maintained the same order of potency (IC50 73 nM) as the native toxin (IC50 25 nM) for the α3ß4 nAChR subtype. In addition, the results of fluorescent spectroscopy and circular dichroism showed TxID-F has the same fluorescence as 5-TAMRA SE, as well as similar profiles as TxID. The results of flow cytometry showed that the histogram shifted significantly to the right for the RAW264.7 cells expressing α3ß4-containing nAChRs stained with TxID-F and confirmed by live cell imaging. The study of fluorescent-labeled α-CTx TxID provides a rich pharmacological tool to explore the structure-function relationship, distribution, and ligand-binding domain of α3ß4 nAChR subtype in the future.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Animais , Conotoxinas/química , Caramujo Conus/química , Antagonistas Nicotínicos/química , Técnicas de Patch-Clamp , Receptores Nicotínicos/metabolismo
16.
J Insect Sci ; 22(6)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374481

RESUMO

Oedaleus asiaticus (Bey-Bienko) is an economically devastating locust species found in grassland and pastoral areas of the Inner Mongolia region of northern China. In this study, resistance to three frequently used insecticides (beta-cypermethrin, matrine, and azadirachtin) was investigated in six field populations of O. asiaticus using the leaf-dip bioassay method. The inhibitory effects of synergists and the activities of detoxification enzyme activities in the different populations were determined to explore potential biochemical resistance mechanisms. The results showed that the field populations SB (resistance ratio [RR] = 7.85), ZB (RR = 5.64), and DB (RR = 6.75) had developed low levels of resistance to beta-cypermethrin compared with a susceptible control strain. Both the SB (RR = 5.92) and XC (RR = 6.38) populations had also developed low levels of resistance against matrine, with the other populations remaining susceptible to both beta-cypermethrin and matrine. All field populations were susceptible to azadirachtin. Synergism analysis showed that triphenyl phosphate (TPP) and diethyl-maleate (DEM) increased the toxicity of beta-cypermethrin significantly in the SB population, while the synergistic effects of TPP, piperonyl butoxide (PBO), and DEM on the toxicity of matrine were higher in SB (SR 3.86, 4.18, and 3.07, respectively) than in SS (SR 2.24, 2.86, and 2.29, respectively), but no synergistic effects of TPP, PBO, and DEM on azadirachtin were found. Biochemical assays showed that the activities of carboxylesterases (CarEs) and glutathione-S-transferases (GSTs) were significantly raised in all field populations of O. asiaticus, with a significant positive correlation observed between beta-cypermethrin resistance and CarE activity. The activities of cytochrome P450 monooxygenases (P450) and multi-function oxidases (MFO) were elevated in all six field populations, and P450 activity displayed strong positive correlations with the three insecticides. Our findings suggest that resistance to beta-cypermethrin in O. asiaticus may be mainly attributed to elevated CarE and GST activities, while P450 plays an important role in metabolizing matrine and azadirachtin. Our study provides insights that will help improve insecticide resistance management strategies.


Assuntos
Gafanhotos , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Piretrinas/farmacologia , Resistência a Inseticidas , China , Matrinas
17.
Angew Chem Int Ed Engl ; 61(23): e202200337, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35302704

RESUMO

Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF), namely DBNO, is developed by adopting the para boron-π-boron and para oxygen-π-oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light-emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF-sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %.

18.
J Proteome Res ; 20(1): 645-660, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107303

RESUMO

Hyperuricemia is a well-known key risk factor for gout and can cause a variety of metabolic diseases. Several studies have shown that dioscin could improve metabolic symptoms and reduce the uric acid level in blood. However, there is no comprehensive metabolomic study on the anti-hyperuricemia effects of dioscin. A total of 29 adult male Kunming mice were divided into three groups: Normal (blank), PO (potassium oxonate-administrated, 200 mg/kg/day), and Dioscin (potassium oxonate + dioscin, potassium oxonate 200 mg/kg/day, dioscin 50 mg/kg/day). All mice were treated for 42 days via oral gavage. This paper implemented an untargeted metabolomics study based on 1H NMR and LC-MS to discover the comprehensive mechanism of dioscin. Furthermore, a targeted lipidomics was fulfilled to further analyze the lipid metabolism disorder. Finally, the metabolic pathway mediated by dioscin was verified at the gene level by means of transcriptomics. The results show 53 different metabolites were closely related to the improvement of dioscin in PO-induced hyperuricemia, and 19 of them were lipids. These metabolites are mainly involved in the tricarboxylic acid cycle, lipid metabolism, amino acid metabolism, and pyrimidine metabolism. According to the transcriptomics study, the levels of 89 genes were significantly changed in the PO group compared to the normal control. Among them, six gene levels were restored by the treatment of dioscin. The six changed genes (tx1b, Tsku, Tmem163, Psmc3ip, Tcap, Tbx15) are mainly involved in the cell cycle and energy metabolism. These metabolites and genes might provide useful information for further study of the therapeutic mechanism of dioscin.


Assuntos
Diosgenina/análogos & derivados , Hiperuricemia , Animais , Diosgenina/farmacologia , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Masculino , Metabolômica , Camundongos , Ácido Úrico
19.
Pharmacol Res ; 173: 105868, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481974

RESUMO

Diabetes-related cardiovascular disease (CVD) is a global health issue that causes thousands of people's death around the world annually. Diabetes-related CVD is still prevailing despite the progression being made in its diagnosis and treatment. Therefore it is urgent to find therapeutic strategies.to prevent it. MicroRNA (miRNA) is a single-stranded non-coding RNA involved in the process of post-transcriptional control of gene expression in eukaryotes. A large number of literatures reveal that miRNAs are implicated in diabetes-related CVD. The increase of miRNAs in exosomes may promote the occurrence and development of diabetes-related cardiovascular complication. However, some other studies identify that miRNAs in exosomes are supposed to be involved in cardiac regeneration and confer cardiac protection effect. Therefore, targeting the miRNA in exosome is regarded as a potent therapeutic measure to alleviate diabetes-related CVD. In this article, we review current knowledge about the role of exosomal miRNAs in diabetes-related cardiovascular complication, such as coronary heart disease, Peripheral artery disease, stroke, diabetic cardiomyopathy, diabetic nephropathy and diabetic retinopathy. Exosomal miRNAs are considered to be central regulators of diabetes-Related CVD and provide a therapeutic tool for diagnosis and treatment of diabetes-related cardiovascular complication.


Assuntos
Doenças Cardiovasculares/genética , Complicações do Diabetes/genética , Exossomos/genética , MicroRNAs , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/terapia , Complicações do Diabetes/terapia , Humanos
20.
Pharmacol Res ; 174: 105937, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648969

RESUMO

To this date, over 100 different types of RNA modification have been identified. Methylation of different RNA species has emerged as a critical regulator of transcript expression. RNA methylation and its related downstream signaling pathways are involved in plethora biological processes, including cell differentiation, sex determination and stress response, and others. It is catalyzed by the RNA methyltransferases, is demethylated by the demethylases (FTO and ALKBH5) and read by methylation binding protein (YTHDF1 and IGF2BP1). Increasing evidence indicates that this process closely connected to cancer cell proliferation, cellular stress, metastasis, immune response. And RNA methylation related protein has been becoming a promising targets of cancer therapy. This review outlines the relationship between different types of RNA methylation and cancer, and some FTO inhibitors in cancer treatment.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA , Animais , Humanos , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA