Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 10867-10876, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38381066

RESUMO

Twisted bilayer graphene (TBG) is a prototypical layered material whose properties are strongly correlated to interlayer coupling. The two stacked graphene layers with distinct orientations are investigated to generate peculiar optical and electronic phenomena. Thus, the rapid, reliable, and nondestructive twist angle identification technique is of essential importance. Here, we integrated the white light reflection spectra (WLRS), the Raman spectroscopy, and the transmission electron microscope (TEM) to propose a facile RGB optical imaging technique that identified the twist angle of the TBG in a large area intuitively with high efficiency. The RGB technique established a robust correlation between the interlayer rotation angle and the contrast difference in the RGB color channels of a standard optical image. The angle-resolved optical behavior is attributed to the absorption resonance matching with the separation of van Hove singularities in the density of states of the TBG. Our study thus developed a route to identify the rotation angle of stacked bilayer graphene by means of a straightforward optical method, which can be further applied in other stacked van der Waals layered materials.

2.
ACS Appl Mater Interfaces ; 14(22): 25984-25992, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604780

RESUMO

Two-dimensional materials (2DMs) with extraordinary electronic and optical properties have attracted great interest in optoelectronic applications. Due to their atomically thin feature, 2DM-based devices are generally sensitive to oxygen and moisture in ambient air, and thus, practical application of durable 2DM-based devices remains challenging. Here, we report a novel strategy to directly synthesize amorphous BN film on various 2DMs and field-effect transistor (FET) devices at low temperatures by conventional chemical vapor deposition. The wafer-scale BN film with controllable thickness serves as a passivation and heat dissipation layer, further improving the long-term stability, the resistance to laser irradiation, and the antioxidation performance of the underneath 2DMs. In particular, the BN capping layer could be deposited directly on a WSe2 FET at low temperature to achieve a clean and conformal interface. The high performance of the BN-capped WSe2 device is realized with suppressed current fluctuations and 10-fold enhanced carrier mobility. The transfer-free amorphous BN synthesis technique is simple and applicable to various 2DMs grown on arbitrary substrates, which shows great potential for applications in future two-dimensional electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA