Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30530547

RESUMO

High-energy muons that are generated via the reaction between primary cosmic rays and the Earth's atmosphere can be used to map out the density distribution in shallow parts of a volcano's interior. This new subterranean imaging technique called muography has been applied to three different kinds of volcano dynamics in Japan: lava dome formation, vulcanian explosions and magma convection. Taking all of the observational data together, it appears that muography can serve as a new and alternative volcano observation technique, providing a fresh approach to understanding eruption mechanism. This review describes observational studies in which muography has been used to explore the volcano's interior.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

2.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30530548

RESUMO

By observing the growth of a research community, particularly the factors of size and strength of involvement, it is possible to evaluate the vitality of a new field. The emerging technology of muography, a new visualization technique to look through gigantic objects with an elementary particle called the muon, is the focus of this study. Recently, the initial applications of muography to the study of structures such as pyramids and volcanoes have been expanding to include more commercial interests such as inspecting social infrastructures and energy and mineral resources. Evolutions of the research networks of muography will be discussed with particular attention to the chronological and lateral structures that could be an indicator of the development of this new technology.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

3.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30530543

RESUMO

A multi-wire proportional chamber-based muo- graphy observatory is under development for the monitoring of the internal structure of Mt Sakurajima in Kyushu, Japan. We investigated the limits of large-scale and high-definition muography. We adjusted the parameters of a modified Gaisser model and found that the spectral index of γ = - 2.64 and normalization factor of C = 0.66 reproduce more accurately the measured fluxes than the original parameters at large thickness. A thickness and zenith angle-dependent correction is suggested to the measured muon flux due to the energy cut which is introduced to suppress the background particles. The multiple scattering of muons was simulated across the standard rock and sea-level atmosphere up to the distance of 5 km. We found that multiple scattering decreases from 10 mrad to 4 mrad across the rock due to the decrease in the steepness of muon spectra. The multiple scattering falls down to about 2 mrad after the object in the atmosphere due to the increase in observed arrival zenith angles. The 2 m2 sized multi-wire proportional chamber-based Muographic Observation System (MMOS) was operating between February and June 2018. Three tracking systems operated reliably with tracking efficiencies of above 95%. The muon flux has been measured correctly down to 10-3 m-2 sr-1 s-1 The average density map of Mt Sakurajima has been measured with angular resolution of 12 mrad × 12 mrad (spatial resolution of 34 m × 34 m from the distance of 2.8 km). The average density values were found between 1.4 and 2 g cm-3, except at the crater regions where lower densities were observed.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26560837

RESUMO

In conventional muography observations using two detectors for muon tracking, the accidental coincidence of vertical electromagnetic showers generates identical trajectories to the muon tracks. Although muography has favorable properties, which allow direct density measurements inside a volcano, the measured density is lower than the actual value due to these fortuitous trajectories. We performed muography of Usu volcano, and confirmed that, in comparison with a use of two detectors, background noise levels were reduced by more than one order of magnitude using seven detectors for selecting linear trajectories. The resultant muographic image showed a high-density region underneath the central region of Usu volcano. This picture is consistent with the magma intrusion model proposed in previous studies. To clarify the three-dimensional location and actual size of the detected high-density body, multidirectional muographic measurements are necessary.


Assuntos
Fenômenos Ecológicos e Ambientais , Mésons , Telescópios
5.
Sci Rep ; 14(1): 564, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177150

RESUMO

Accurate traceability of time is prerequisite to the proper functioning of many necessary aspects of our modern life including making financial transactions, managing automated technology and navigating the transport of goods and human beings. One of the most reliable international time references is the Coordinated Universal Time (UTC) that can be distributed wirelessly in principle. However, this wireless option is currently limited to GPS and other global navigation satellite systems. GPS signals are weak and easily affected by environmental conditions. Moreover, since GPS signals are unencrypted, the possibility of a signal spoofing attack remains a continuous threat. Prior works showed the potential of the alternative wireless time synchronization technique called Cosmic Time Synchronization (CTS), in which, clocks are located 50 m apart were wirelessly synchronized with a sub-microsecond level accuracy, and its operation time was limited to 20 min. However, for the actual implementation of CTS to real-life situations, these distance and stability values are not sufficient. In this study, we constructed a dedicated CTS facility and conducted a long-haul (180 m) CTS demonstration. As a result, it was verified that this long-range CTS is capable of maintaining stable sub-microsecond time synchronization for 3 days with a granularity of 148.8 ns (SD) and an offset of 22.97 ns. Since the current version of CTS can now operate over an area that has been enlarged by more than one order of magnitude, it is possible to utilize for more diverse applications, and the application to a banking synchronization system is proposed. As a case study, it is shown that CTS now has the capability to offer wireless time synchronization service to large clusters of financial firms in large cities. With its accurate time dissemination (the metrological traceability to UTC), its reasonable cost, and its hack-proof, stable design, this latest CTS model has the capacity to improve the accuracy of timing for a wide variety of sectors.

6.
Sci Rep ; 14(1): 7605, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556591

RESUMO

Various positioning techniques such as Wi-Fi positioning system have been proposed to use in situations where satellite navigation is unavailable. One such system, the muometric positioning system (muPS), was invented for navigation which operates in locations where even radio waves cannot reach such as underwater or underground. muPS takes advantage of a key feature of its probe, cosmic-ray muons, which travel straightforwardly at almost a speed of light in vacuum regardless of the matter they traverse. Similar to other positioning techniques, muPS is a technique to determine the position of a client's muPS receiver within the coordinate defined by reference detectors. This can be achieved either by using time-of-flight (ToF) or angle of arrival (AoA) measurements. The latter configuration (AoA), called the Vector-muPS has recently been invented and the present paper describes the developments of the first prototype of a vector muometric wireless navigation system (MuWNS-V) with this new vector-muPS concept and its demonstration. With MuWNS-V, the reference tracker and the receiver ran wirelessly with fully independent readout systems, and a positioning accuracy of 3.9 cm (RMS) has been achieved. We also evaluated the outcome of measuring continuous indoor localization of a moving receiver with this prototype. Our results indicated that further improvements in positioning accuracy will be attainable by acquiring higher angular resolution of the reference trackers. It is anticipated that "sub-cm level" navigation will be possible for muPS which could be applied to many situations such as future autonomous mobile robot operations.

7.
Sci Rep ; 13(1): 15272, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714877

RESUMO

Since the development of many future technologies are becoming more and more dependent on indoor navigation, various alternative navigation techniques have been proposed with radio waves, acoustic, and laser beam signals. In 2020, muometric positioning system (muPS) was proposed as a new indoor navigation technique; in 2022, the first prototype of wireless muPS was demonstrated in underground environments. However, in this first physical demonstration, its navigation accuracy was limited to 2-14 m which is far from the level required for the practical indoor navigation applications. This positioning error was an intrinsic problem associated with the clock that was used for determining the time of flight (ToF) of the muons, and it was practically impossible to attain cm-level accuracy with this initial approach. This paper introduces the completely new positioning concept for muPS, Vector muPS, which works by determining direction vectors of incoming muons instead of utilizing ToF. It is relatively easier to attain a 10-mrad level angular resolution with muon trackers that have been used for muographic imagery. Therefore, Vector muPS retains the unique capacity to operate wirelessly in indoor environments and also has the capacity to achieve a cm-level accuracy. By utilizing an essentially different concept from what is used in other navigation techniques, (measuring the distance between the reference and the receiver), Vector muPS enables more flexible, and longer-term stable positioning. Anticipated applications and the future outlook of Vector muPS is also discussed.

8.
iScience ; 26(2): 105897, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36718362

RESUMO

By using true random number (TRN) generators, encoding with the highest security can be realized. However, a completely secure strategy to transfer these TRNs has not yet been devised. Quantum key distribution (QKD) has attempted to establish secure key distribution methodology of this kind; however, several quantum cracking strategies have been predicted and experimentally demonstrated. In this work, COSMOCAT was invented as a solution for next-generation ultrahigh security near-field communications. With COSMOCAT, TRNs are generated from naturally occurring and ubiquitous cosmic-ray muons and the generated cosmic keys are distributed by these muons with an unprecedented level of security. The successful results of this experiment indicate that our prototype and the new key-generation-and-distribution standard can be utilized for practical encoding and near-field data transfer at rates of 10-100 Mbps. It is anticipated that COSMOCAT will be one of key techniques for future high security, near-field communication management.

9.
Sci Rep ; 13(1): 8746, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253790

RESUMO

Thus far, a perfectly secure encryption key storage system doesn't exist. As long as key storage is connected to a network system, there is always a chance that it can be cracked. Even if storage is not continually connected to a network system; it is repeatedly necessary for an individual to access storage to upload and download the data; hence there is always a loophole with every conventional encryption key storage system. By utilizing the penetrative nature of cosmic-ray muons, the COSMOCAT (Cosmic coding and transfer) technique may tackle this problem by eliminating the requirement for any network connection to data storage. COSMOCAT was invented as a post quantum key generation and distribution technique for wireless near field communication. However, in its first stage of development, COSMOCAT relied on standard comparators and Global Positioning System (GPS) or other Global Navigation Satellite Systems (GNSS) for key generation. Temporal jitters of the signals outputted from comparators and frequency fluctuations in GPS-disciplined oscillators degraded the key strength and the efficiency of both the key generation and distribution. New strategies are tested in this paper to improve these factors. As a result, the key strength and the key authenticating rate limit are respectively improved by 4 orders of magnitude and more than 5 orders of magnitude. As a consequence, it has become possible to propose a practical methodology for a new key storage and authentication strategy which has the potential to be an impregnable defense against any kind of cyber/physical attack to data storage. Practical applications of COSMOCATS-based symmetric-key cryptosystems to an electronic digital signing system, communication, and cloud storage are also discussed.

10.
Sci Rep ; 13(1): 5951, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045902

RESUMO

Time synchronization of sensor nodes is critical for optimal operation of wireless sensor networks (WSNs). Since clocks incorporated into each node tend to drift, recurrent corrections are required. Most of these correction schemes involve clients periodically receive RF timing signals from a time server. However, an RF-based scheme is prone to glitches or failure unless operating in a region with almost entirely unobstructed space; hence it only operates well in a limited range of environments. For example, GPS requires open-sky environments. Moreover, the precision of land-based RF schemes is limited to a few micro seconds. In this work, we report on a more versatile and new type of recurrent clock resynchronization scheme called cosmic time calibrator (CTC) and its development and testing. CTC utilizes cosmic-ray muon signals instead of RF signals. Muons are penetrative and continuously precipitating onto the Earth's surface, and they tend to travel linearly through encountered matter at approximately the speed of light in vacuum. Therefore, muons themselves can periodically transfer the precise timing information from node to node; hence, the performance of the inter-nodal communication device such as Wi-Fi or Bluetooth is minimized/unnecessary for an online/offline WSN analysis. The experimental results have indicated that a resynchronization frequency and precision of 60 Hz and ± 4.3 ns (S.D.) can be achieved. Modelling work of the WSN-based structural health monitoring of aerospace structures has shown that CTC can contribute to the development of new critical and useful applications of WSN in a wider range of environments.

11.
iScience ; 26(7): 107160, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534155

RESUMO

Igneous processes were quite widespread in the small bodies of the Solar System (SBSS) and were initially fueled by short-lived radioisotopes, the proto-Sun, impact heating, and differentiation heating. Once they finished, long-lived radioisotopes continued to warm the active bodies of the Earth, (possibly) Venus, and the cryovolcanism of Enceladus. The widespread presence of olivine and pyroxenes in planets and also in SBSS suggests that they were not necessarily the product of igneous processes and they might have been recycled from previous nebular processes or entrained in comets from interstellar space. The difference in temperature between the inner and the outer Solar System has clearly favored thermal annealing of the olivine close to the proto-Sun. Transport of olivine within the Solar System probably occurred also due to protostellar jets and winds but the entrainment in SBSS from interstellar space would overcome the requirement of initial turbulent regime in the protoplanetary nebula.

12.
iScience ; 26(5): 106595, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192970

RESUMO

In 2022, the idea of the cosmic time synchronizer (CTS) was proposed for a precise wireless synchronization of local clocks (<100 ns). Because CTS does not require critical timing information traffic among CTS sensors, the technique can be considered robust against jamming and spoofing. In this work, a small-scale CTS sensor network has been developed and tested for the first time. Good time synchronization performances were obtained for a short-haul configuration (30-35 ns (SD, 1 σ), over 50-60 m). Based on the results of this work, CTS could be potentially conceived as a 'self-adjusting' system, offering high level continuous (perpetual) performances, to be considered either as a backup chain for GPS disciplined oscillators (GPS DO), a standalone standard for frequency and time interval measurements, or as a tool for the dissemination of reference time scales to final users, with improved characteristics in terms of robustness and reliability.

13.
iScience ; 26(10): 108019, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37841596

RESUMO

Debris dams have a crucial role in consolidation of river basins and allow erosion control, flood protection in mountainous areas. Many of these infrastructures have operated over five decades, thus structural health monitoring (SHM) of these infrastructures became timely due to their aging. Utilizing new techniques is required for inspecting a large number of dams and deciding about their reinforcement or reconstruction. In this work, we propose cosmic-ray muography as a complementary tool for the SHM of debris dams. We conducted the first muographic surveying of a sabo check dam in the Karasu River, Gunma, Japan. The average mass density image was produced with a spatial resolution of 0.5 m through the dam. The comparison of density data reconstructed by muography and gamma-ray logging suggest the internal deterioration of dam in the region where cement released out from the embankment body.

14.
iScience ; 26(7): 107000, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534132

RESUMO

Navigation in indoor and underground environments has been extensively studied to realize automation of home, hospital, office, factory and mining services, and various techniques have been proposed for its implementation. By utilizing the relativistic and penetrative nature of cosmic-ray muons, a completely new wireless navigation technique called wireless muometric navigation system (MuWNS) was developed. This paper shows the results of the world's first physical demonstration of MuWNS used on the basement floor inside a building to navigate (a person) in an area where global navigation satellite system (GNSS)/ global positioning system (GPS) signals cannot reach. The resultant navigation accuracy was comparable or better than the positioning accuracy attainable with single-point GNSS/GPS positioning in urban areas. With further improvements in stability of local clocks used for timing, it is anticipated that MuWNS can be adapted to improve autonomous mobile robot navigation and positioning as well as other underground and underwater practical applications.

15.
Sci Rep ; 12(1): 7078, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490170

RESUMO

Precise time synchronization is an essential technique required for financial transaction systems, industrial automation and control systems, as well as land and ocean observation networks. However, the time synchronization signals based on the global-positioning-system (GPS), or global-navigation-satellite-system, are sometimes unavailable or only partially available in indoor, underground and underwater environments. In this work, the simultaneous and penetrative natures of the muon component of the extended air shower (EAS) were used as signals for time synchronization in environments with little or no GPS coverage. CTS was modeled by combining the results of previous EAS experiments with OCXO holdover precision measurements. The results have shown the capability of CTS to reach perpetual local time synchronization levels of less than 100 ns with a hypothetical detector areal coverage of larger than 2 × 10-4. We anticipate this level of areal coverage is attainable and cost-effective for use in consumer smartphone networks and dense underwater sensor networks.

16.
Sci Rep ; 12(1): 6725, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468908

RESUMO

Sub-hourly to seasonal and interannual oceanographic phenomena can be better understood with high special resolution and high frequency tidal observations. However, while current tidal measurements can provide sufficiently high observational density in terms of time, the observational density in terms of space is low mainly due to the high expense of constructing tide gauge stations. In this work, we designed a novel tide monitoring technique with muography that could be operated in near-shore basements (or similar structures on land below sea level) and found that more practical, stable, robust and cost-effective high-spatiotemporal-density tide measurements are possible. Although the time resolution, sensitivity, and the distance between the detectors and the shorelines are tradeoffs, hourly and annual sensitivity (ability to detect the tide height variations) of less than 10 cm and 1 mm can be statistically attained, respectively. It is anticipated that the current muographic technique could be applied as an alternative, cost-effective and convenient dense tidal monitor network strategy in coastal areas worldwide.


Assuntos
Oceanografia , Oceanografia/métodos
17.
Sci Rep ; 12(1): 10114, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710813

RESUMO

While satellite-based global navigation systems have become essential tools in our daily lives, their effectiveness is often hampered by the fact that the signals cannot be accessed in underground, indoor, or underwater environments. Recently, a novel navigation system has been invented to address this issue by utilizing the characteristics of the ubiquitous and highly penetrative cosmic-ray muons. This technique, muometric navigation, does not require active signal generation and enables positioning in the aforementioned environments within a reference coordinate defined by the three-dimensional positions of multiple detectors. In its first phase of development, these reference detectors had to be connected to the receivers via a wired configuration to guarantee precise time synchronization. This work describes more versatile, wireless muometric navigation system (MuWNS), which was designed in conjunction with a cost-effective, crystal-oscillator-based grandmaster clock and a performance evaluation is reported for shallow underground/indoor, deep underground and undersea environments. It was confirmed that MuWNS offers a navigation quality almost equivalent to aboveground GPS-based handheld navigation by determining the distance between the reference frame and the receivers within a precision range between 1 and 10 m.


Assuntos
Algoritmos
18.
Sci Rep ; 12(1): 16710, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202852

RESUMO

Large-scale solid bodies on Earth such as volcanoes and man-made pyramids have been visualized with solid earth muography, and the recently invented technique, acqueous muography, has already demonstrated its capability to visualize ocean tides and tsunami. In this work, atmospheric muography, a technique to visualize and monitor the vertical profile of tropic cyclones (TCs) is presented for the first time. The density distribution and time-dependent behavior of several TCs which had approached Kagoshima, Japan, has been investigated with muography. The resultant time-sequential images captured their warm cores, and their movements were consistent with the TC trails and barometric pressure variations observed at meteorological stations. By combining multidirectional muographic images with barometric data, we anticipate that muography will become a useful tool to monitor the three-dimensional density distribution of a targeted mesoscale convective system.


Assuntos
Tempestades Ciclônicas , Pressão Atmosférica , Planeta Terra , Humanos , Japão
19.
Sci Rep ; 12(1): 6097, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414679

RESUMO

Meteorological-tsunami-like (or meteotsunami-like) periodic oscillation was muographically detected with the Tokyo-Bay Seafloor Hyper-Kilometric Submarine Deep Detector (TS-HKMSDD) deployed in the underwater highway called the Trans-Tokyo Bay Expressway or Tokyo Bay Aqua-Line (TBAL). It was detected right after the arrival of the 2021 Typhoon-16 that passed through the region 400 km south of the bay. The measured oscillation period and decay time were respectively 3 h and 10 h. These measurements were found to be consistent with previous tide gauge measurements. Meteotsunamis are known to take place in bays and lakes, and the temporal and spatial characteristics of meteotsunamis are similar to seismic tsunamis. However, their generation and propagation mechanisms are not well understood. The current result indicates that a combination of muography and trans-bay or trans-lake underwater tunnels will offer an additional tool to measure meteotsunamis at locations where tide gauges are unavailable.


Assuntos
Baías , Tsunamis , Monitoramento Ambiental , Tóquio
20.
Sci Rep ; 11(1): 17729, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489492

RESUMO

Post-eruptive destabilization of volcanic edifices by gravity driven debris flows or erosion can catastrophically impact the landscapes, economies and human societies surrounding active volcanoes. In this work, we propose cosmic-ray muon imaging (muography) as a tool for the remote monitoring of hydrogeomorphic responses to volcano landscape disturbances. We conducted the muographic monitoring of Sakurajima volcano, Kyushu, Japan and measured continuous post-eruptive activity with over 30 lahars per year. The sensitive surface area of the Multi-Wire-Proportional-Chamber-based Muography Observation System was upgraded to 7.67 m[Formula: see text]; this made it possible for the density of tephra within the crater region to be measured in 40 days. We observed the muon flux decrease from 10 to 40% through the different regions of the crater from September 2019 to October 2020 due to the continuous deposition of tephra fallouts. In spite of the long-term mass increase, significant mass decreases were also observed after the onsets of rain-triggered lahars that induced the erosion of sedimented tephra. The first muographic observation of these post-eruptive phenomena demonstrate that this passive imaging technique has the potential to contribute to the assessment of indirect volcanic hazards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA