Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34020543

RESUMO

Atomic charges play a very important role in drug-target recognition. However, computation of atomic charges with high-level quantum mechanics (QM) calculations is very time-consuming. A number of machine learning (ML)-based atomic charge prediction methods have been proposed to speed up the calculation of high-accuracy atomic charges in recent years. However, most of them used a set of predefined molecular properties, such as molecular fingerprints, for model construction, which is knowledge-dependent and may lead to biased predictions due to the representation preference of different molecular properties used for training. To solve the problem, we present a new architecture based on graph convolutional network (GCN) and develop a high-accuracy atomic charge prediction model named DeepAtomicCharge. The new GCN architecture is designed with only the atomic properties and the connection information between the atoms in molecules and can dynamically learn and convert molecules into appropriate atomic features without any prior knowledge of the molecules. Using the designed GCN architecture, substantial improvement is achieved for the prediction accuracy of atomic charges. The average root-mean-square error (RMSE) of DeepAtomicCharge is 0.0121 e, which is obviously more accurate than that (0.0180 e) reported by the previous benchmark study on the same two external test sets. Moreover, the new GCN architecture needs much lower storage space compared with other methods, and the predicted DDEC atomic charges can be efficiently used in large-scale structure-based drug design, thus opening a new avenue for high-performance atomic charge prediction and application.


Assuntos
Redes Neurais de Computação , Desenho de Fármacos , Aprendizado de Máquina , Estrutura Molecular , Teoria Quântica
2.
Bioinformatics ; 36(18): 4721-4728, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32525553

RESUMO

MOTIVATION: Partial atomic charges are usually used to calculate the electrostatic component of energy in many molecular modeling applications, such as molecular docking, molecular dynamics simulations, free energy calculations and so forth. High-level quantum mechanics calculations may provide the most accurate way to estimate the partial charges for small molecules, but they are too time-consuming to be used to process a large number of molecules for high throughput virtual screening. RESULTS: We proposed a new molecule descriptor named Atom-Path-Descriptor (APD) and developed a set of APD-based machine learning (ML) models to predict the partial charges for small molecules with high accuracy. In the APD algorithm, the 3D structures of molecules were assigned with atom centers and atom-pair path-based atom layers to characterize the local chemical environments of atoms. Then, based on the APDs, two representative ensemble ML algorithms, i.e. random forest (RF) and extreme gradient boosting (XGBoost), were employed to develop the regression models for partial charge assignment. The results illustrate that the RF models based on APDs give better predictions for all the atom types than those based on traditional molecular fingerprints reported in the previous study. More encouragingly, the models trained by XGBoost can improve the predictions of partial charges further, and they can achieve the average root-mean-square error 0.0116 e on the external test set, which is much lower than that (0.0195 e) reported in the previous study, suggesting that the proposed algorithm is quite promising to be used in partial charge assignment with high accuracy. AVAILABILITY AND IMPLEMENTATION: The software framework described in this paper is freely available at https://github.com/jkwang93/Atom-Path-Descriptor-based-machine-learning. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado de Máquina , Software , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA