Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
J Am Chem Soc ; 146(28): 18899-18904, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38975975

RESUMO

In recent years, dysprosium macrocycle single-molecule magnets (SMMs) have received increasing attention due to their excellent air/thermal stability, strong magnetic anisotropy, and rigid molecular skeleton. However, they usually display fast zero-field quantum tunneling of the magnetization (QTM) rate, severely hindering their data storage applications. Herein, we report the design, synthesis, and characterization of an air-stable monodecker didysprosium macrocycle integrating strong single-ion anisotropy, near-perfect local crystal field (CF) symmetry, and efficient exchange bias. These indispensable features enable clear-cut elucidation of the crucial role of very weak antiferromagnetic coupling on magnetization dynamics, creating a prominent SMM with a large effective energy barrier (Ueff) of 670 cm-1, open hysteresis loops at zero field up to 14.9 K, and a record relaxation time of QTM (τQTM), 24281 s, for all known nonradical-bridged lanthanide SMMs.

2.
Chemistry ; 30(27): e202304369, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38414107

RESUMO

Single-molecule toroics (SMTs), defined as a type of molecules with toroidal arrangement of magnetic moment associated with bi-stable non-magnetic ground states, are promising candidates for high-density information storage and the development of molecule based multiferroic materials with linear magneto-electric coupling and multiferroic behavior. The design and synthesis of SMTs by arranging the magnetic anisotropy axis in a circular pattern at the molecular level have been of great interest to scientists for last two decades since the first detection of the SMT behavior in the seminal Dy3 molecules. DyIII ion has long been the ideal candidate for constructing SMTs due to its Kramer ion nature as well as high anisotropy. Nevertheless, other LnIII ions such as TbIII and HoIII ions, as well as some paramagnetic transition metal ions, have also been used to construct many nontraditional SMTs. Therefore, we review the progress in the studies of SMTs based on the nontraditional perspective, ranging from the 3D topological to 1D&2D&3D polymeric SMTs, and 3d-4f to non Dy-based SMTs. We hope the understanding we provide about nontraditional SMTs will be helpful in designing novel SMTs.

3.
J Am Chem Soc ; 145(36): 20121-20131, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656516

RESUMO

High-yield syntheses of the lanthanide dinitrogen complexes [(Cp2tttM)2(µ-1,2-N2)] (1M, M = Gd, Tb, Dy; Cpttt = 1,2,4-C5tBu3H2), in which the [N2]2- ligands solely adopt the rare end-on or 1,2-bridging mode, are reported. The bulk of the tert-butyl substituents and the smaller radii of gadolinium, terbium, and dysprosium preclude formation of the side-on dinitrogen bonding mode on steric grounds. Elongation of the nitrogen-nitrogen bond relative to N2 is observed in 1M, and their Raman spectra show a major absorption consistent with N═N double bonds. Computational analysis of 1Gd identifies that the local symmetry of the metallocene units lifts the degeneracy of two 5dπ orbitals, leading to differing overlap with the π* orbitals of [N2]2-, a consequence of which is that the dinitrogen ligand occupies a singlet ground state. Magnetic measurements reveal antiferromagnetic exchange in 1M and single-molecule magnet (SMM) behavior in 1Dy. Ab initio calculations show that the magnetic easy axis in the ground doublets of 1Tb and 1Dy align with the {M-N═N-M} connectivity, in contrast to the usual scenario in dysprosium metallocene SMMs, where the axis passes through the cyclopentadienyl ligands. The [N2]2- ligands in 1M allow these compounds to be regarded as two-electron reducing agents, serving as synthons for divalent gadolinium, terbium, and dysprosium. Proof of principle for this concept is obtained in the reactions of 1M with 2,2'-bipyridyl (bipy) to give [Cp2tttM(κ2-bipy)] (2M, M = Gd, Tb, Dy), in which the lanthanide is ligated by a bipy radical anion, with strong metal-ligand direct exchange coupling.

4.
Chemistry ; 29(5): e202202896, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36326186

RESUMO

Two pairs of chiral end-on azido-bridged dinuclear hexaazamacrocycles, [Dy2 (LN6 R/S )2 (N3 )2 Cl2 ](BPh4 )2 (1R/1S) and [Dy2 (LN6 R/S )2 (N3 )4 ]Cl2 (2R/2S) (LN6 R/S is hexaazamacrocyclic neutral Schiff base ligand derived from 2,6-diformylpyridine and (1R, 2R)/(1S, 2S)-diaminocyclohexane), were constructed by adjusting the molar ratio of sodium azide to Dy(III) macrocycle precursor. Structural analyses reveal that all Dy(III) centers in complexes 1R/1S and 2R/2S are nine-coordinate with hula-loop coordination geometry, and the differences between 1R/1S and 2R/2S are the terminal coordination anion and counter anion. Magnetic studies indicate that complex 2S displays typical SMM behaviors under a zero dc field, whereas 1S just shows slow relaxation of magnetization resulting from a relatively weak axial crystal field. Significantly, complex 2R/2S represents the first homochiral all-nitrogen-coordinated lanthanide single-molecule magnet.


Assuntos
Elementos da Série dos Lantanídeos , Imãs , Disprósio , Nitrogênio
5.
Inorg Chem ; 62(25): 9924-9933, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37314885

RESUMO

The structure and magnetic properties of the bimetallic borohydride-bridged dysprosocenium compound [{(η5-Cpttt)(η5-CpMe4t)Dy}2(µ:κ2:κ2-BH4)]+[B(C6F5)4]- ([3Dy][B(C6F5)4]) are reported along with the solution-phase dynamics of the isostructural yttrium and lutetium analogues (Cpttt is 1,2,4-tri(tert-butyl)cyclopentadienyl, CpMe4t is tetramethyl(tert-butyl)cyclopentadienyl). The synthesis of [3M][B(C6F5)4] was accomplished in the 2:1 stoichiometric reactions of [(η5-Cpttt)(η5-CpMe4t)Dy(BH4)] (2M) with [CPh3][B(C6F5)4], with the metallocenes 2M obtained from reactions of the half-sandwich complexes [(η5-Cpttt)M(BH4)2(THF)] (1M) (M = Y, Dy, Lu) with NaCpMe4t. Crystallographic studies show significant lengthening of the M···B distance on moving through the series 1M, 2M, and 3M, with essentially linear {M···B···M} bridges in 3M. Multinuclear NMR spectroscopy indicates restricted rotation of the Cpttt ligands in 3Y and 3Lu in solution. The single-molecule magnet (SMM) properties of [3M][B(C6F5)4] are characterized by Raman and Orbach processes, with an effective barrier of 533(18) cm-1 and relaxation via the second-excited Kramers doublet. Although quantum tunneling of the magnetization (QTM) was not observed for [3M][B(C6F5)4], it was, surprisingly, found in its magnetically dilute version, which has a very similar barrier of Ueff = 499(21) cm-1. Consistent with this observation, slightly wider openings of the magnetic hysteresis loop at 2 K are found for [3M][B(C6F5)4] but not for the diluted analogue. The dynamic magnetic properties of the dysprosium SMMs and the role of exchange interactions in 3Dy are interpreted with the aid of multireference ab initio calculations.

6.
Chem Soc Rev ; 51(23): 9469-9481, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36342360

RESUMO

Lanthanide (Ln) compounds represent a unique chemical platform for developing high-temperature single-molecule magnets (SMMs). The shift in research focus from increasing the magnetic anisotropy barrier (Ueff) to raising the blocking temperature (TB) has upgraded the design criteria from considering only the static crystal field (CF) to paying attention to the effects of molecular vibrations beyond the first coordination environment on the relaxation of magnetization. Although the realization of high working temperatures for Ln SMMs remains a formidable challenge, recent remarkable advances in dimetallofullerenes (di-EMFs) with Ln ions and mixed-valence dilanthanide complexes both feature single-electron Ln-Ln bonds to afford room-temperature molecular magnets. In this review, we provide critical discussion on the achievements of metal-metal (MM) bonded lanthanide SMMs, focusing on the effects of MM bonds on the magnetization dynamics, and shedding light on the future developments of high-temperature Ln SMMs.

7.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203439

RESUMO

The [Gd8(opch)8(CO3)4(H2O)8]·4H2O·10MeCN coordination cluster (1) crystallises in P1¯. The Gd8 core is held together by four bridging carbonates derived from atmospheric CO2 as well as the carboxyhydrazonyl oxygens of the 2-hydroxy-3-methoxybenzylidenepyrazine-2-carbohydrazide (H2opch) Schiff base ligands. The magnetic measurements show that the GdIII ions are effectively uncoupled as seen from the low Weiss constant of 0.05 K needed to fit the inverse susceptibility to the Curie-Weiss law. Furthermore, the magnetisation data are consistent with the Brillouin function for eight independent GdIII ions. These features lead to a magnetocaloric effect with a high efficiency which is 89% of the theoretical maximum value.


Assuntos
Dióxido de Carbono , Oxigênio , Íons
8.
Angew Chem Int Ed Engl ; 62(12): e202218540, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36710242

RESUMO

The syntheses and magnetic properties of organometallic heterometallic compounds [K(THF)6 ]{CoI [(µ3 -HAN)RE2 Cp*4 ]2 } (1-RE) and [K(Crypt)]2 {CoI [(µ3 -HAN)RE2 Cp*4 ]2 } (2-RE) containing hexaazatrinaphthylene radicals (HAN⋅3- ) and four rare earth (RE) ions are reported. 1-RE shows isolable species with ligand-based mixed valency as revealed by cyclic voltammetry (CV) thus leading to the isolation of 2-RE via one-electron chemical reduction. Strong electronic communication in mixed-valency supports stronger overall ferromagnetic behaviors in 2-RE than 1-RE containing Gd and Dy ions. Ac magnetic susceptibility data reveal 1-Dy and 2-Dy both exhibit slow magnetic relaxation. Importantly, larger coercive field was observed in the hysteresis of 2-Dy at 2.0 K, indicating the enhanced SMM behavior compared with 1-Dy. Ligand-based mixed-valency strategy has been used for the first time to improve the magnetic coupling in lanthanide (Ln) SMMs, thus opening up new ways to construct strongly coupled Ln-SMMs.

9.
Chemistry ; 28(65): e202202239, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35979914

RESUMO

In spite of achievement of a lot of Ln-radical SMMs, how to improve magnetic behavior of Ln-radical system remains challenging. Here, two series of Ln-radical complexes have successfully been built using an imino nitroxide biradical, namely, [Ln2 (hfac)6 (ImPhPyobis)2 ] (LnIII =Gd 1, Tb 2, Dy 3) and [Ln2 Cu2 (hfac)10 (ImPhPyobis)2 ] (LnIII =Gd 4, Dy 5; hfac=hexafluoroacetylacetonate and ImPhPyobis=5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). For these biradical-metal complexes, two imino nitroxide biradicals bind two Ln(III) ions via their oxygen atoms coming from 4-oxypyridinium units to produce a binuclear {Ln2 O2 } unit. Those imino nitroxide groups are free for complexes 1-3, however one of imino nitroxide groups of the biradical is ligated to the copper(II) ion for complexes 4 and 5. The distinct magnetic relaxation behaviors are observed for two Dy derivatives, as revealed by ac magnetic studies: complex 3 presents one magnetic process with the effective energy barrier(Ueff ) of 74.0 K while complex 5 exhibits dual relaxation processes with Ueff values for the fast- and slow-relaxation being 20.2 K and 30.9 K, respectively, which implies that the second coordination sphere of Dy ion plays a critical role for magnetic relaxation.

10.
Inorg Chem ; 61(50): 20547-20551, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36480952

RESUMO

A five-coordinate mononuclear Dy(III) complex with a C4v geometry (square-pyramid), [Dy(X)(DBP)2(TMG(H))2] [X = 3-(methylthio)-1-propoxide, DBP = 2,6-di-tert-butylphenoxide, and TMG(H) = 1,1,3,3-tetramethylguanidine] (1), was designed and synthesized. The complex displays a large anisotropy barrier of 432 cm-1 in the absence of a dc magnetic field benefiting from the strong interaction between the phenolate and Dy(III) ion. Ab initio calculations reveal that the most possible relaxation pathway is going through the second excited state. The terminal SMe group in the apical position furnishes the possibility of depositing it on the Au surface by the strong Au-S bond.

11.
Angew Chem Int Ed Engl ; 61(17): e202200525, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35108431

RESUMO

Replacing a monoanionic cyclopentadienyl (Cp) ligand in dysprosium single-molecule magnets (SMMs) with a dianionic cyclobutadienyl (Cb) ligand in the sandwich complexes [(η4 -Cb'''')Dy(η5 -C5 Me4 t Bu)(BH4 )]- (1), [(η4 -Cb'''')Dy(η8 -Pn† )K(THF)] (2) and [(η4 -Cb'''')Dy(η8 -Pn† )]- (3) leads to larger energy barriers to magnetization reversal (Cb''''=C4 (SiMe3 )4 , Pn† =1,4-di(tri-isopropylsilyl)pentalenyl). Short distances to the Cb'''' ligands and longer distances to the Cp ligands in 1-3 are consistent with the crystal field splitting being dominated by the former. Theoretical analysis shows that the magnetic axes in the ground Kramers doublets of 1-3 are oriented towards the Cb'''' ligands. The theoretical axiality parameter and the relative axiality parameter Z and Zrel are introduced to facilitate comparisons of the SMM performance of 1-3 with a benchmark SMM. Increases in Z and Zrel when Cb''' replaces Cp signposts a route to SMMs with properties that could surpass leading systems.

12.
J Am Chem Soc ; 143(27): 10077-10082, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181405

RESUMO

Design and synthesis of air-stable and easily tailored high-performance single-molecule magnets (SMMs) are of great significance toward the implementation of SMMs in molecular-based magneto-electronic devices. Here, by introducing electron-withdrawing fluorinated substituents on equatorial ligand, two chiral Dy(III) macrocyclic complexes, RRRR-Dy-D6hF12 (1) and SSSS-Dy-D6hF12 (2), with a record anisotropy barrier exceeding 1800 K and the longest relaxation time approaching 2500 s at 2.0 K for all known air-stable SMMs, were obtained. The nearly perfect axiality of the ground Kramers doublet (KD) enables the open hysteresis loops up to 20 K in the magnetically diluted sample. It is notable that they are structurally rigid with high thermal stability and the apical ligand can be tailored to carry proper surface-binding groups. This finding not only improves the magnetic properties for air-stable SMMs but also provides a new avenue for deposition of SMMs on surfaces.

13.
J Am Chem Soc ; 142(9): 4104-4107, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32064864

RESUMO

Addition of Lewis acidic [Cp*2M]+ (M = Y, Gd) to the dinitrosyliron complexes (DNICs) [(NacNacAr)Fe(NO)2]- (Ar = mesityl, 2,6-diisopropylphenyl) results in formation of the isonitrosyl-bridged DNICs [(Cp*)2M(µ-ON)2Fe(NacNacAr)]. When Ar = 2,6-diisopropylphenyl, coupling of the NO ligands and release of N2O occur. Two factors contribute to this previously unobserved DNIC reactivity mode. First, the oxophilic rare-earth elements drive the formation of isonitrosyl bonds, forcing the DNIC nitrogen atoms into proximity. Second, the bulky substituents further squeeze the DNIC, which ultimately overcomes the barrier to NO coupling, demonstrating that N2O elimination can occur from a single iron center.

14.
Inorg Chem ; 59(1): 443-451, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31846321

RESUMO

Profiting from a multicoordinating nitronyl nitroxide radical, i.e. a functionalized nitronyl nitroxide biradical ligand, a family of novel tetranuclear lanthanide complexes, formulated as [RE4(hfac)12(NITPhO-3Pybis)2] (RE = Gd 1, Tb 2, Dy 3, Ho 4, and Y 5; NITPhO-3Pybis = 5-(3-pyridinyloxy)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene; hfac = hexafluoroacetylacetonate) were successfully constructed and characterized. In these complexes, the designed functionalized nitronyl nitroxide biradical ligand functions as the chelating and/or bridging ligand to bind the lanthanide ions, resulting in tetranuclear octa-spin lanthanide complexes with a circle-shaped arrangement. Direct-current magnetic data show that antiferromagnetic interaction dominates in the Gd derivative, while ferromagnetic coupling plays a leading role in complex Y, in which the relevant magnetic exchange parameters were obtained through applicable magnetic models. Dynamic magnetic studies of Tb and Dy analogues exhibit apparent frequency-dependent out-of-phase signals, which are typical features for slow magnetic relaxation behavior. The values of Ueff and τ0 were obtained as follows: Ueff = 10.5 K and τ0 = 6.6 × 10-7 s for the Tb complex and Ueff = 5.2 K and τ0 = 2.5 × 10-6 s for the Dy compound. Intriguingly, the butterfly shaped hysteresis loop is found for the Tb analogue. Guided by fluorescence spectra, the representative peaks are identified for the Tb derivative.

15.
Inorg Chem ; 59(1): 642-647, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31854982

RESUMO

The isocarbonyl-ligated metallocene coordination polymers [Cp*2M(µ-OC)W(Cp)(CO)(µ-CO)]∞ were synthesized with M = Gd (1, L = THF) and Dy (2, no L). In a zero direct-current field, the dysprosium version 2 was found to be a single-molecule magnet (SMM), with analysis of the dynamic magnetic susceptibility data revealing that the axial metallocene coordination environment leads to a large anisotropy barrier of 557(18) cm-1 and a fast quantum-tunnelling rate of ∼3.7 ms. Theoretical analysis of two truncated versions of 2, [Cp*2Dy{(µ-OC)W(Cp)(CO)2}2]- (2a), and [Cp*2Dy(OC)2]+ (2b), in which the effects of electron correlation outside the 4f orbital space were studied, revealed that tungsten-to-carbonyl back-donation plays an important role in determining the strength of the competing equatorial field at dysprosium and, hence, the dynamic magnetic properties. The finding that a classical organo-transition-metal bonding scenario can be used as an indirect way of tuning the rate of quantum tunnelling potentially provides an alternative chemical strategy for utilizing the fast magnetic relaxation properties of SMMs.

16.
Inorg Chem ; 59(7): 5218-5230, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196322

RESUMO

Spin-phonon coupling plays a critical role in magnetic relaxation in single-molecule magnets (SMMs) and molecular qubits. Yet, few studies of its nature have been conducted. Phonons here refer to both intermolecular and intramolecular vibrations. In the current work, we show spin-phonon couplings between IR-active phonons in a lanthanide molecular complex and Kramers doublets (from the crystal field). For the SMM Er[N(SiMe3)2]3 (1, Me = methyl), the couplings are observed in the far-IR magnetospectroscopy (FIRMS) of crystals with coupling constants ≈ 2-3 cm-1. In particular, one of the magnetic excitations couples to at least two phonon excitations. The FIRMS reveals at least three magnetic excitations (within the 4I15/2 ground state/manifold; hereafter, manifold) at 0 T at 104, ∼180, and 245 cm-1, corresponding to transitions from the ground state, MJ = ±15/2, to the first three excited states, MJ = ±13/2, ±11/2, and ±9/2, respectively. The transition between the ground and first excited Kramers doublet in 1 is also observed in inelastic neutron scattering (INS) spectroscopy, moving to a higher energy with an increasing magnetic field. INS also gives complete phonon spectra of 1. Periodic DFT computations provide the energies of all phonon excitations, which compare well with the spectra from INS, supporting the assignment of the inter-Kramers doublet (magnetic) transitions in the spectra. The current studies unveil and measure the spin-phonon couplings in a typical lanthanide complex and throw light on the origin of the spin-phonon entanglement.

17.
Molecules ; 25(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392886

RESUMO

The reaction between Dy(NO3)3∙6H2O and the bulky Schiff base ligand, N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in the presence of the organic base NEt3 has led to crystallization and structural, spectroscopic and magnetic characterization of a new heptanuclear [Dy7(OH)6(OMe)2(NO3)1.5(nacb)2(nacbH)6(MeOH)(H2O)2](NO3)1.5 (1) compound in ~40% yield. Complex 1 has a unique hourglass-like metal topology, among all previously reported {Dy7} clusters, comprising two distorted {Dy4(µ3-OH)3(µ3-OMe)}8+ cubanes that share a common metal vertex (Dy2). Peripheral ligation about the metal core is provided by the carboxylate groups of four η1:η1:η1:µ single-deprotonated nacbH- and two η1:η1:η2:η1:µ3 fully-deprotonated nacb2- ligands. Complex 1 is the first structurally characterized 4f-metal complex bearing the chelating/bridging ligand nacbH2 at any protonation level. Magnetic susceptibility studies revealed that 1 exhibits slow relaxation of magnetization at a zero external dc field, albeit with a small energy barrier of ~5 K for the magnetization reversal, most likely due to the very fast quantum-tunneling process. The combined results are a promising start to further explore the reactivity of nacbH2 upon all lanthanide ions and the systematic use of this chelate ligand as a route to new 4f-metal cluster compounds with beautiful structures and interesting magnetic dynamics.


Assuntos
1-Naftilamina/química , Magnetismo/métodos , Imãs/química , Metais/química , Compostos Organometálicos/química , Bases de Schiff/química , Benzoatos/química , Quelantes/química , Cristalografia por Raios X , Disprósio , Elementos da Série dos Lantanídeos/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Bases de Schiff/síntese química , Temperatura
18.
Inorg Chem ; 58(5): 3167-3174, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776223

RESUMO

The construction of metallosupramolecular complexes toward interesting topological structures is a critical challenge for chemists. The fluctuation in the synthetic strategy, by keeping the same metal-ligand combination, has proved a very significant approach to construct metallosupramolecular architectures. Herein, by varying the reaction conditions four new DyIII-supramolecular complexes based on a flexible dihydrazone ligand H2L (H2L = bis(2-hydroxy-3-methoxybenzylidene)adipohydrazide) in cooperation with different anions and solvents having formulas [Dy4L4(µ2-N3)2](NO3)2·6CH3OH·2H2O (1), [Dy8L8(µ2-CH3OH)4]Cl8·6CH3OH·14H2O (2), [Dy12L12(µ2-OH)2(OH)6(CH3O)2](NO3)2·2CH3OH·14H2O (3), and [Dy12L12(µ2-OH)2(NO3)2(OH)3(CH3O)](NO3)4·22H2O (4), have been successfully synthesized and their crystal structures confirmed by single crystal X-ray diffraction studies. The structural study reveals that 1 and 2 have quadruple-stranded helicate and dual triple-stranded helicate supramolecular structures, respectively, while 3 and 4 display "octahedron" cagelike supramolecular structures. The magnetic studies reveal that complexes 1-3 exhibit slow magnetic relaxation behavior, while complex 4 displays a series of typical frequency-dependent relaxation signals at 0 Oe applied dc field which is a rare case in polynuclear 4f single-molecule magnet (SMM) family to date. Interestingly, the distinct magnetic dynamic behavior was noticed for nearly isoskeletal complexes 3 and 4, which can be attributed to the modification of the coordination environment around DyIII ions.

19.
Inorg Chem ; 58(9): 5715-5724, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30969114

RESUMO

Six tetranuclear DyIII complexes [Dy4(L)2(CH3OH)3(NO3)3]·3NO3·2H2O (1a), [Dy4(L)2(CH3OH)2(SCN)4(OCH3)2]·2CH3OH·2H2O (1b), {[Dy4(L)2(CH3OH)(SCN)6(CH3CN)]·3CH3OH·4CH3CN}2 (2a), [Dy4(L)2(CH3OH)2(SCN)6]·6CH3OH·2H2O (2b), [Dy4(L)2(CH3OH)2(SCN)4(OCH3)2]·5CH3OH·2H2O (3a), and [Dy4(L)2(CH3OH)(SCN)5(H2O)2]·SCN·4CH3OH·2H2O (3b) were structurally and magnetically characterized. The Dy1/Dy2 centers in these complexes are eight-coordinate and submitted to pseudo- D4d symmetry environments. It is noteworthy that the modulation of coordination terminal around Dy1/Dy2 centers induces distinct magnetic relaxation processes, switching from single relaxation (1b) to two-step relaxation (2b). All complexes show significant zero-field single-molecule magnet (SMM) properties with the exception of 3b, which only features the slow magnetic relaxation behavior under a zero dc field. Ab initio calculations substantiate that the excellent SMM property of complex 1b should mainly profit from strong ferromagnetic interactions between the individual DyIII ions, while different single-ion magnetism results in better SMM property of complex 3a than that of 3b.

20.
Inorg Chem ; 58(18): 11903-11911, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31192594

RESUMO

Four hexanuclear circular helicates, {[Dy6L6(DMF)12]·6CF3SO3·12DMF}2 (1Dy), {[Gd6L6(DMF)12]·6CF3SO3·12DMF}2 (1Gd), [Dy6L6(DMF)10(H2O)2]·6ClO4·4H2O·10DMF (2Dy), and [Gd6L6(DMF)12]·6ClO4·2H2O·10DMF (2Gd), where DMF = N,N-dimethylformamide, were synthesized by employing a glutaratedihydrazide-bridged bis(3-methoxysalicylaldehyde) ligand (H2L) and characterized structurally and magnetically. Direct-current magnetic susceptibility studies indicated predominant weak antiferromagnetic exchange interactions among gadolinium analogues, which were quantified using the PHI software, giving J = -0.003 cm-1 with g = 2.00 for 1Gd and J = -0.001 cm-1 with g = 2.02 for 2Gd. Alternating-current magnetic susceptibility measurements indicated that complexes 1Dy and 2Dy show slow relaxation of magnetization behavior, further supported by theoretical calculations that also highlighted the toroidal arrangement of the magnetic moments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA