Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(6): e3002680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38865309

RESUMO

CRISPR-Cas12a, often regarded as a precise genome editor, still requires improvements in specificity. In this study, we used a GFP-activation assay to screen 14 new Cas12a nucleases for mammalian genome editing, successfully identifying 9 active ones. Notably, these Cas12a nucleases prefer pyrimidine-rich PAMs. Among these nucleases, we extensively characterized Mb4Cas12a obtained from Moraxella bovis CCUG 2133, which recognizes a YYN PAM (Y = C or T). Our biochemical analysis demonstrates that Mb4Cas12a can cleave double-strand DNA across a wide temperature range. To improve specificity, we constructed a SWISS-MODEL of Mb4Cas12a based on the FnCas12a crystal structure and identified 8 amino acids potentially forming hydrogen bonds at the target DNA-crRNA interface. By replacing these amino acids with alanine to disrupt the hydrogen bond, we tested the influence of each mutation on Mb4Cas12a specificity. Interestingly, the F370A mutation improved specificity with minimal influence on activity. Further study showed that Mb4Cas12a-F370A is capable of discriminating single-nucleotide polymorphisms. These new Cas12a orthologs and high-fidelity variants hold substantial promise for therapeutic applications.


Assuntos
Alelos , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Humanos , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/química , Animais , Engenharia de Proteínas/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Polimorfismo de Nucleotídeo Único , Mutação , DNA/metabolismo , DNA/genética , Células HEK293
2.
Nat Chem Biol ; 20(3): 344-352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052959

RESUMO

Compact Cas9 nucleases hold great promise for therapeutic applications. Although several compact Cas9 nucleases have been developed, many genomic loci still could not be edited due to a lack of protospacer adjacent motifs (PAMs). We previously developed a compact SlugCas9 recognizing an NNGG PAM. Here we demonstrate that SlugCas9 displays comparable activity to SpCas9. We developed a simple phage-assisted evolution to engineer SlugCas9 for unique PAM requirements. Interestingly, we generated a SlugCas9 variant (SlugCas9-NNG) that could recognize an NNG PAM, expanding the targeting scope. We further developed a SlugCas9-NNG-based adenine base editor and demonstrated that it could be delivered by a single adeno-associated virus to disrupt PCSK9 splice donor and splice acceptor. These genome editors greatly enhance our ability for in vivo genome editing.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Pró-Proteína Convertase 9 , Adenina , Endonucleases/genética
3.
J Cell Mol Med ; 27(14): 1988-2003, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37243441

RESUMO

As one of the most prevalent heritable cardiovascular diseases, dilated cardiomyopathy (DCM) induces cardiac insufficiency and dysfunction. Although genetic mutation has been identified one of the causes of DCM, the usage of genetic biomarkers such as RNAs for DCM early diagnosis is still being overlooked. In addition, the alternation of RNAs could reflect the progression of the diseases, as an indicator for the prognosis of patients. Therefore, it is beneficial to develop genetic based diagnostic tool for DCM. RNAs are often unstable within circulatory system, leading to the infeasibility for clinical application. Recently discovered exosomal miRNAs have the stability that is then need for diagnostic purpose. Hence, fully understanding of the exosomal miRNA within DCM patients is vital for clinical translation. In this study, we employed the next generation sequencing based on the plasma exosomal miRNAs to comprehensively characterize the miRNAs expression in plasma exosomes from DCM patients exhibiting chronic heart failure (CHF) compared to healthy individuals. A complex landscape of differential miRNAs and target genes in DCM with CHF patients were identified. More importantly, we discovered that 92 differentially expressed miRNAs in DCM patients undergoing CHF were correlated with several enriched pathways, including oxytocin signalling pathway, circadian entrainment, hippo signalling pathway-multiple species, ras signalling pathway and morphine addiction. This study reveals the miRNA expression profiles in plasma exosomes in DCM patients with CHF, and further reveal their potential roles in the pathogenesis of it, presenting a new direction for clinical diagnosis and management of DCM patients with CHF.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , MicroRNAs , Humanos , MicroRNAs/metabolismo , Cardiomiopatia Dilatada/diagnóstico , Coração , Doença Crônica
4.
J Cell Mol Med ; 26(5): 1486-1500, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35088943

RESUMO

Recent studies have confirmed that cardiomyocyte-derived exosomes have many pivotal biological functions, like influencing the progress of coronary artery disease via modulating macrophage phenotypes. However, the mechanisms underlying the crosstalk between cardiomyocytes and macrophages have not been fully characterized. Hence, this study aimed to observe the interaction between cardiomyocytes under hypoxia and macrophages through exosome communication and further evaluate the ability of exosomes derived from cardiomyocytes cultured under hypoxic conditions (Hypo-Exo) to polarize macrophages, and the effect of alternatively activated macrophages (M2) on hypoxic cardiomyocytes. Our results revealed that hypoxia facilitated the production of transforming growth factor-beta (TGF-ß) in H9c2 cell-derived exosomes. Moreover, exosomes derived from cardiomyocytes cultured under normal conditions (Nor-Exo) and Hypo-Exo could induce RAW264.7 cells into classically activated macrophages (M1) and M2 macrophages respectively. Likewise, macrophage activation was induced by circulating exosomes isolated from normal human controls (hNor-Exo) or patients with acute myocardial infarction (hAMI-Exo). Thus, our findings support that the profiles of hAMI-Exo have been changed, which could regulate the polarization of macrophages and subsequently the polarized M2 macrophages reduced the apoptosis of cardiomyocytes in return. Based on our findings, we speculate that exosomes have emerged as important inflammatory response modulators regulating cardiac oxidative stress injury.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Exossomos/genética , Humanos , Hipóxia , Macrófagos , MicroRNAs/genética , Miócitos Cardíacos
5.
J Transl Med ; 20(1): 568, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474294

RESUMO

BACKGROUND: Mounting evidence has revealed the dynamic variations in the cellular status and phenotype of the smooth muscle cell (SMC) are vital for shaping the atherosclerotic plaque microenvironment and ultimately mapping onto heterogeneous clinical outcomes in coronary artery disease. Currently, the underlying clinical significance of SMC evolutions remains unexplored in atherosclerosis. METHODS: The dissociated cells from diseased segments within the right coronary artery of four cardiac transplant recipients and 1070 bulk samples with atherosclerosis from six bulk cohorts were retrieved. Following the SMC fate trajectory reconstruction, the MOVICS algorithm integrating the nearest template prediction was used to develop a stable and robust molecular classification. Subsequently, multi-dimensional potential biological implications, molecular features, and cell landscape heterogeneity among distinct clusters were decoded. RESULTS: We proposed an SMC cell fate decision signature (SCFDS)-based atherosclerosis stratification system and identified three SCFDS subtypes (C1-C3) with distinguishing features: (i) C1 (DNA-damage repair type), elevated base excision repair (BER), DNA replication, as well as oxidative phosphorylation status. (ii) C2 (immune-activated type), stronger immune activation, hyper-inflammatory state, the complex as well as varied lesion microenvironment, advanced stage, the most severe degree of coronary stenosis severity. (iii) C3 (stromal-rich type), abundant fibrous content, stronger ECM metabolism, immune-suppressed microenvironment. CONCLUSIONS: This study uncovered atherosclerosis complex cellular heterogeneity and a differentiated hierarchy of cell populations underlying SMC. The novel high-resolution stratification system could improve clinical outcomes and facilitate individualized management.


Assuntos
Miócitos de Músculo Liso
6.
J Cardiovasc Pharmacol ; 79(2): e145-e152, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813574

RESUMO

ABSTRACT: Sodium-glucose cotransporter 2 (SGLT2) inhibitors have well-documented effects on reducing hospitalization for heart failure and cardiovascular mortality, although the effect on atrial fibrillation (AF) has not been comprehensively investigated. Therefore, we performed a meta-analysis to assess the association between SGLT2 inhibitors and AF risk by systematically searching PubMed, Embase, and ClinicalTrials.gov. Two investigators independently identified randomized controlled trials, which compared SGLT2 inhibitors with control in patients with type 2 diabetes, heart failure, or chronic kidney disease. Primary outcomes were incident AF and stroke. We included 20 randomized trials involving 63,604 patients. The SGLT2 inhibitors used were dapagliflozin (7 studies, 28,834 patients), canagliflozin (7 studies, 17,440 patients), empagliflozin (5 studies, 9082 patients), and ertugliflozin (1 study, 8246 patients). Follow-up ranged from 24 weeks to 202 weeks. SGLT2 inhibitors treatment was associated with a significant attenuation in the risk of incident AF (odds ratio = 0.82; 95% confidence interval, 0.72-0.93; P = 0.002) compared with control. No significant difference in stroke between SGLT2 inhibitors and control groups was found (odds ratio = 0.99; 95% confidence interval, 0.85-1.15; P = 0.908). This present meta-analysis indicates that SGLT2 inhibitors are associated with a lower risk of incident AF and do not significantly affect stroke risk for patients with and without type 2 diabetes.


Assuntos
Fibrilação Atrial , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Acidente Vascular Cerebral , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Insuficiência Cardíaca/complicações , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/prevenção & controle
7.
J Nanobiotechnology ; 20(1): 141, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303876

RESUMO

With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.


Assuntos
Osso e Ossos , Nanomedicina , Cartilagem , Humanos , Nanomedicina/métodos , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
8.
J Cell Mol Med ; 25(4): 2176-2189, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33354912

RESUMO

Circulating exosomes delivering microRNAs are involved in the occurrence and development of cardiovascular diseases. How are the circulating exosomes involved in the repair of endothelial injury in acute myocardial infarction (AMI) convalescence (3-7 days) was still not clear. In this study, circulating exosomes from AMI patients (AMI-Exo) and healthy controls (Normal-Exo) were extracted. In vitro and in vivo, our study showed that circulating exosomes protected endothelial cells (HUVECs) from oxidative stress damage; meanwhile, Normal-Exo showed better protective effects. Through the application of related inhibitors, we found that circulating exosomes shuttled between HUVECs via dynamin. Microarry analysis and qRT-PCR of circulating exosomes showed higher expression of miR-193a-5p in Normal-Exo. Our study showed that miR-193a-5p was the key factor on protecting endothelial cells in vitro and in vivo. Bioinformatics analyses found that activin A receptor type I (ACVR1) was the potential downstream target of miR-193a-5p, which was confirmed by ACVR1 expression and dual-luciferase report. Inhibitor of ACVR1 showed similar protective effects as miR-193a-5p. While overexpression of ACVR1 could attenuate protective effects of miR-193a-5p. To sum up, these findings suggest that circulating exosomes could shuttle between cells through dynamin and deliver miR-193a-5p to protect endothelial cells from oxidative stress damage via ACVR1.


Assuntos
Células Endoteliais/metabolismo , Exossomos/metabolismo , Técnicas de Transferência de Genes , MicroRNAs/metabolismo , Adulto , Animais , Transporte Biológico , Biópsia , Biologia Computacional , Dinaminas/metabolismo , Exossomos/ultraestrutura , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/administração & dosagem , Pessoa de Meia-Idade , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Estresse Oxidativo , Plasmídeos , Interferência de RNA , Ratos
9.
J Cell Sci ; 132(17)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31409692

RESUMO

Metastasis accounts for the majority of all cancer deaths, yet the process remains poorly understood. A pivotal step in the metastasis process is the exiting of tumor cells from the circulation, a process known as extravasation. However, it is unclear how tumor cells extravasate and whether multicellular clusters of tumor cells possess the ability to exit as a whole or must first disassociate. In this study, we use in vivo zebrafish and mouse models to elucidate the mechanism tumor cells use to extravasate. We found that circulating tumor cells exit the circulation using the recently identified extravasation mechanism, angiopellosis, and do so as both clusters and individual cells. We further show that when melanoma and cervical cancer cells utilize this extravasation method to exit as clusters, they exhibit an increased ability to form tumors at distant sites through the expression of unique genetic profiles. Collectively, we present a new model for tumor cell extravasation of both individual and multicellular circulating tumor cells.This article has an associated First Person interview with the first author of the paper.


Assuntos
Movimento Celular/fisiologia , Células Neoplásicas Circulantes/metabolismo , Animais , Contagem de Células , Células HeLa , Humanos , Camundongos , Metástase Neoplásica
11.
J Cell Mol Med ; 24(15): 8291-8303, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578938

RESUMO

Cardiovascular diseases (CVDs) are a major health problem worldwide, and health professionals are still actively seeking new and effective approaches for CVDs treatment. Presently, extracellular vesicles, particularly exosomes, have gained its popularity for CVDs treatment because of their function as messengers for inter- and extra-cellular communications to promote cellular functions in cardiovascular system. However, as a newly developed field, researchers are still trying to fully understand the role of exosomes, and their mechanism in mediating cardiac repair process. Therefore, a comprehensive review of this topic can be timely and favourable. In this review, we summarized the basic biogenesis and characterization of exosomes and then further extended the focus on the circulating exosomes in cellular communication and stem cell-derived exosomes in cardiac disease treatment. In addition, we covered interactions between the heart and other organs through exosomes, leading to the diagnostic characteristics of exosomes in CVDs. Future perspectives and limitations of exosomes in CVDs were also discussed with a special focus on exploring the potential delivery routes, targeting the injured tissue and engineering novel exosomes, as well as its potential as one novel target in the metabolism-related puzzle.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Exossomos/metabolismo , Exossomos/patologia , Animais , Comunicação Celular/fisiologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos
12.
J Interv Cardiol ; 2020: 4713591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372887

RESUMO

BACKGROUND: Alanine aminotransferase (ALT) is referred as liver transaminase and predominantly expressed by hepatocytes. Previous evidences showed that high levels of ALT were reversely associated with short- and long-term outcomes in patients with myocardial infarction. Besides, low lymphocyte has been demonstrated to be significantly correlated with adverse clinical outcomes in coronary artery disease (CAD). However, evidences about the relationship between ALT-to-lymphocyte ratio (ALR) and outcomes in CAD patients with normal liver function are limited. The aim of this study was to assess the relationship between ALR and clinical outcomes in patients with CAD. METHODS: This is a retrospective cohort study, and a total of 3561 patients were enrolled in Clinical Outcomes and Risk Factors of Patients with CAD after percutaneous coronary intervention (PCI), from January 2013 to December 2017. After excluding patients with liver dysfunction, we finally enrolled 2714 patients. These patients were divided into two groups according to ALR value: the lower group (ALR < 14.06, n = 1804) and the higher group (ALR ≥ 14.06, n = 910). The average follow-up time was 37.59 ± 22.24 months. RESULTS: We found that there were significant differences between the two groups in the incidence of all-cause mortality (ACM) (P < 0.001) and cardiac mortality (CM) (P=0.010). Kaplan-Meier survival analysis suggested that CAD patients with higher ALR tended to have an increased accumulated risk of ACM and CM (log rank P < 0.001 and P=0.006, respectively). Multivariate Cox regression analysis showed that ALR was an independent predictor of ACM (hazard ratio (HR) = 2.017 (95% confidence interval (CI): 1.289-3.158), P=0.002) and CM (HR = 1.862 (95% CI: 1.047-3.313), P=0.034). We did not find significant difference in the incidence of major adverse cardiovascular events (MACEs) and major adverse cardiovascular and cerebrovascular events (MACCEs) between the two groups after adjustments of confounders. CONCLUSION: Our results indicate that ALR is an independent predictor of long-term adverse outcomes in CAD patients who underwent PCI.


Assuntos
Alanina Transaminase/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/mortalidade , Contagem de Linfócitos , Intervenção Coronária Percutânea , Idoso , Doença da Artéria Coronariana/cirurgia , Feminino , Humanos , Estimativa de Kaplan-Meier , Fígado , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida
13.
J Cell Mol Med ; 23(9): 6048-6059, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31222939

RESUMO

Sodium (±)-5-bromo-2-(a-hydroxypentyl) benzoate (generic name: brozopine, BZP) has been reported to protect against stroke-induced brain injury and was approved for Phase II clinical trials for treatment of stroke-related brain damage by the China Food and Drug Administration (CFDA). However, the role of BZP in cardiac diseases, especially in pressure overload-induced cardiac hypertrophy and heart failure, remains to be investigated. In the present study, angiotensin II stimulation and transverse aortic constriction were employed to induce cardiomyocyte hypertrophy in vitro and in vivo, respectively, prior to the assessment of myocardial cell autophagy. We observed that BZP administration ameliorated cardiomyocyte hypertrophy and excessive autophagic activity. Further results indicated that AMP-activated protein kinase (AMPK)-mediated activation of the mammalian target of rapamycin (mTOR) pathway likely played a role in regulation of autophagy by BZP after Ang II stimulation. The activation of AMPK with metformin reversed the BZP-induced suppression of autophagy. Finally, for the first time, we demonstrated that BZP could protect the heart from pressure overload-induced hypertrophy and dysfunction, and this effect is associated with its inhibition of maladaptive cardiomyocyte autophagy through the AMPK-mTOR signalling pathway. These findings indicated that BZP may serve as a promising compound for treatment of pressure overload-induced cardiac remodelling and heart failure.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Cardiomegalia/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Angiotensina II/toxicidade , Animais , Cardiomegalia/induzido quimicamente , Linhagem Celular , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Remodelação Ventricular/efeitos dos fármacos
14.
Circ Res ; 120(11): 1768-1775, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28298296

RESUMO

RATIONALE: Stem cell therapy faces several challenges. It is difficult to grow, preserve, and transport stem cells before they are administered to the patient. Synthetic analogs for stem cells represent a new approach to overcome these hurdles and hold the potential to revolutionize regenerative medicine. OBJECTIVE: We aim to fabricate synthetic analogs of stem cells and test their therapeutic potential for treatment of acute myocardial infarction in mice. METHODS AND RESULTS: We packaged secreted factors from human bone marrow-derived mesenchymal stem cells (MSC) into poly(lactic-co-glycolic acid) microparticles and then coated them with MSC membranes. We named these therapeutic particles synthetic MSC (or synMSC). synMSC exhibited a factor release profile and surface antigens similar to those of genuine MSC. synMSC promoted cardiomyocyte functions and displayed cryopreservation and lyophilization stability in vitro and in vivo. In a mouse model of acute myocardial infarction, direct injection of synMSC promoted angiogenesis and mitigated left ventricle remodeling. CONCLUSIONS: We successfully fabricated a synMSC therapeutic particle and demonstrated its regenerative potential in mice with acute myocardial infarction. The synMSC strategy may provide novel insight into tissue engineering for treating multiple diseases.


Assuntos
Ácido Láctico/administração & dosagem , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/terapia , Ácido Poliglicólico/administração & dosagem , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tomografia por Emissão de Pósitrons/métodos , Resultado do Tratamento
15.
BMC Cardiovasc Disord ; 19(1): 182, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366374

RESUMO

BACKGROUND: The development of novel oral anticoagulants (NOACs) has changed the landscape of non-valvular atrial fibrillation (NVAF) management. In this study, the effectiveness and the safety of several NOACs were evaluated in a real-world setting among Asian patients with NVAF. METHODS: The literature search was conducted crossing different databases including Embase, MEDLINE, and the Cochrane Library from inception through March 1, 2019, for studies which included real-world perspectives comparing the individual NOACs with each other or with warfarin among Asians with NVAF. The primary outcomes were defined as stroke or systemic embolism (SSE) and major bleeding; ischemic stroke, all-cause death as well as intracranial bleeding were classified as the secondary outcomes. RESULTS: From sixteen real-world studies, a total of 312,827 Asian patients were included in this analysis. In comparison with warfarin, the utilization of apixaban, dabigatran, and rivaroxaban significantly lowered the risk of major bleeding (apixaban: HR 0.47, 95%CI 0.35-0.63; dabigatran: HR 0.59, 95%CI 0.47-0.73; rivaroxaban: HR 0.66, 95%CI 0.52-0.83) and lessened the all-cause death rate (apixaban: HR 0.29, 95%CI 0.16-0.52; dabigatran: HR 0.40, 95%CI 0.27-0.60; rivaroxaban: HR 0.42, 95%CI 0.28-0.65). Apixaban (HR 0.59; 95%CI 0.40-0.85) reduced the possibility of ischemic stroke when compared against dabigatran. Rivaroxaban showed a higher chance of causing an ischemic stroke (HR 1.61; 95%CI 1.08-2.41) and major bleeding (HR 1.39; 95%CI 1.02-1.90) than Apixaban. CONCLUSIONS: Apixaban, dabigatran and rivaroxaban were more effective than warfarin on reducing the risks of stroke and haemorrhage; meanwhile, apixaban was likely to lower the risk of major bleeding comparing to rivaroxaban. TRIAL REGISTRATION: PROSPERO registry number: CRD42018086914 .


Assuntos
Anticoagulantes/administração & dosagem , Povo Asiático , Fibrilação Atrial/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle , Administração Oral , Anticoagulantes/efeitos adversos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/etnologia , Fibrilação Atrial/mortalidade , Hemorragia/induzido quimicamente , Humanos , Metanálise em Rede , Medição de Risco , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/etnologia , Acidente Vascular Cerebral/mortalidade , Resultado do Tratamento
16.
Lipids Health Dis ; 18(1): 210, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801554

RESUMO

BACKGROUND: It has been confirmed that the triglyceride to high-density lipoprotein cholesterol ratio (THR) is associated with insulin resistance and metabolic syndrome. However, to the best of our knowledge, only a few studies with small sample sizes have investigated the relationship between THR and coronary artery disease (CAD). Therefore, we aimed to assess the correlation between the THR and long-term mortality in patients with CAD after undergoing percutaneous coronary intervention (PCI) in our study that enrolled a large number of patients. METHODS: A total of 3269 post-PCI patients with CAD were enrolled in the CORFCHD-ZZ study from January 2013 to December 2017. The mean follow-up time was 37.59 ± 22.24 months. Patients were divided into two groups according to their THR value: the lower group (THR < 2.84, n = 1232) and the higher group (THR ≥ 2.84, n = 2037). The primary endpoint was long-term mortality, including all-cause mortality (ACM) and cardiac mortality (CM). The secondary endpoints were major adverse cardiac events (MACEs) and major adverse cardiac and cerebrovascular events (MACCEs). RESULTS: In our study, ACM occurred in 124 patients: 30 (2.4%) in the lower group and 94 (4.6%) in the higher group (P = 0.002). MACEs occurred in 362 patients: 111 (9.0%) in the lower group and 251 (12.3%) in the higher group (P = 0.003). The number of MACCEs was 482: 152 (12.3%) in the lower group and 320 (15.7%) in the higher group (P = 0.008). Heart failure occurred in 514 patients: 89 (7.2%) in the lower group and 425 (20.9%) in the higher group (P < 0.001). Kaplan-Meier analyses showed that elevated THR was significantly related to long-term ACM (log-rank, P = 0.044) and the occurrence of heart failure (log-rank, P < 0.001). Multivariate Cox regression analyses showed that the THR was an independent predictor of long-term ACM (adjusted HR = 2.042 [1.264-3.300], P = 0.004) and heart failure (adjusted HR = 1.700 [1.347-2.147], P < 0.001). CONCLUSIONS: An increased THR is an independent predictor of long-term ACM and heart failure in post-PCI patients with CAD.


Assuntos
HDL-Colesterol/sangue , Doença das Coronárias/diagnóstico , Insuficiência Cardíaca/diagnóstico , Intervenção Coronária Percutânea , Triglicerídeos/sangue , Idoso , Biomarcadores/sangue , LDL-Colesterol/sangue , Doença das Coronárias/sangue , Doença das Coronárias/mortalidade , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento
17.
J Cell Mol Med ; 22(3): 1984-1991, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29341439

RESUMO

Cardiac stromal cells (CSCs) can be derived from explant cultures, and a subgroup of these cells is viewed as cardiac mesenchymal stem cells due to their expression of CD90. Here, we sought to determine the therapeutic potential of CD90-positive and CD90-negative CSCs in a rat model of chronic myocardial infarction. We obtain CD90-positive and CD90-negative fractions of CSCs from rat myocardial tissue explant cultures by magnetically activated cell sorting. In vitro, CD90-negative CSCs outperform CD90-positive CSCs in tube formation and cardiomyocyte functional assays. In rats with a 30-day infarct, injection of CD90-negative CSCs augments cardiac function in the infarct in a way superior to that from CD90-positive CSCs and unsorted CSCs. Histological analysis revealed that CD90-negative CSCs increase vascularization in the infarct. Our results suggest that CD90-negative CSCs could be a development candidate as a new cell therapy product for chronic myocardial infarction.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Antígenos Thy-1/genética , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Separação Imunomagnética , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Antígenos Thy-1/deficiência , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Stem Cells ; 35(1): 170-180, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27350343

RESUMO

Stem cells possess the ability to home in and travel to damaged tissue when injected intravenously. For the cells to exert their therapeutic effect, they must cross the blood vessel wall and enter the surrounding tissues. The mechanism of extravasation injected stem cells employ for exit has yet to be characterized. Using intravital microscopy and a transgenic zebrafish line Tg(fli1a:egpf) with GFP-expressing vasculature, we documented the detailed extravasation processes in vivo for injected stem cells in comparison to white blood cells (WBCs). While WBCs left the blood vessels by the standard diapedesis process, injected cardiac and mesenchymal stem cells underwent a distinct method of extravasation that was markedly different from diapedesis. Here, the vascular wall undergoes an extensive remodeling to allow the cell to exit the lumen, while the injected cell remains distinctively passive in activity. We termed this process Angio-pello-sis, which represents an alternative mechanism of cell extravasation to the prevailing theory of diapedesis. Stem Cells 2017;35:170-180 Video Highlight: https://youtu.be/i5EI-ZvhBps.


Assuntos
Vasos Sanguíneos/fisiologia , Extravasamento de Materiais Terapêuticos e Diagnósticos/patologia , Animais , Antígenos CD11/metabolismo , Agregação Celular , Membrana Celular/metabolismo , Forma Celular , Cães , Feminino , Humanos , Injeções , Microscopia Intravital , Masculino , Células-Tronco Mesenquimais , Microesferas , Miócitos Cardíacos/citologia , Polímeros/química , Ratos , Fatores de Tempo , Migração Transendotelial e Transepitelial , Peixe-Zebra/metabolismo
19.
J Cell Mol Med ; 21(8): 1503-1512, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28296006

RESUMO

Cardiosphere-derived cells (CDCs) have been shown to reduce scar size and increase viable myocardium in human patients with mild/moderate myocardial infarction. Studies in rodent models suggest that CDC therapy may confer therapeutic benefits in patients with non-ischaemic dilated cardiomyopathy (DCM). We sought to determine the safety and efficacy of allogeneic CDC in a large animal (canine) model of spontaneous DCM. Canine CDCs (cCDCs) were grown from a donor dog heart. Similar to human CDCs, cCDCs express CD105 and are slightly positive for c-kit and CD90. Thirty million of allogeneic cCDCs was infused into the coronary vessels of Doberman pinscher dogs with spontaneous DCM. Adverse events were closely monitored, and cardiac functions were measured by echocardiography. No adverse events occurred during and after cell infusion. Histology on dog hearts (after natural death) revealed no sign of immune rejection from the transplanted cells.


Assuntos
Cardiomiopatia Dilatada/terapia , Vasos Coronários/citologia , Esferoides Celulares/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Biomarcadores/metabolismo , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/patologia , Vasos Coronários/imunologia , Cães , Ecocardiografia , Endoglina/genética , Endoglina/imunologia , Feminino , Expressão Gênica , Humanos , Masculino , Miocárdio/imunologia , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/imunologia , Esferoides Celulares/imunologia , Esferoides Celulares/transplante , Células-Tronco/imunologia , Antígenos Thy-1/genética , Antígenos Thy-1/imunologia , Transplante Homólogo
20.
Respir Res ; 18(1): 132, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28666430

RESUMO

BACKGROUND: Resident stem and progenitor cells have been identified in the lung over the last decade, but isolation and culture of these cells remains a challenge. Thus, although these lung stem and progenitor cells provide an ideal source for stem-cell based therapy, mesenchymal stem cells (MSCs) remain the most popular cell therapy product for the treatment of lung diseases. Surgical lung biopsies can be the tissue source but such procedures carry a high risk of mortality. METHODS: In this study we demonstrate that therapeutic lung cells, termed "lung spheroid cells" (LSCs) can be generated from minimally invasive transbronchial lung biopsies using a three-dimensional culture technique. The cells were then characterized by flow cytometry and immunohistochemistry. Angiogenic potential was tested by in-vitro HUVEC tube formation assay. In-vivo bio- distribution of LSCs was examined in athymic nude mice after intravenous delivery. RESULTS: From one lung biopsy, we are able to derive >50 million LSC cells at Passage 2. These cells were characterized by flow cytometry and immunohistochemistry and were shown to represent a mixture of lung stem cells and supporting cells. When introduced systemically into nude mice, LSCs were retained primarily in the lungs for up to 21 days. CONCLUSION: Here, for the first time, we demonstrated that direct culture and expansion of human lung progenitor cells from pulmonary tissues, acquired through a minimally invasive biopsy, is possible and straightforward with a three-dimensional culture technique. These cells could be utilized in long-term expansion of lung progenitor cells and as part of the development of cell-based therapies for the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).


Assuntos
Brônquios/citologia , Brônquios/fisiologia , Pulmão/citologia , Pulmão/fisiologia , Esferoides Celulares/fisiologia , Células-Tronco/fisiologia , Adolescente , Idoso , Animais , Biópsia , Técnicas de Cultura de Células/métodos , Feminino , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Infusões Intravenosas , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA