Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Dis ; 44(9): 1315-1324, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34101847

RESUMO

Covert mortality nodavirus (CMNV), a novel aquatic pathogen, causes viral covert mortality disease (VCMD) in shrimps and also known to infect farmed marine fish. To date, there has no report regarding the ability of this virus to infect freshwater fish. In this study, we screened and discovered CMNV-positive freshwater zebrafish individuals by reverse transcription-nested PCR (RT-nPCR). The sequence of CMNV amplicons from zebrafish was found to share 99% identity with RNA-dependent RNA polymerase (RdRp) gene of the original CMNV isolate. Histopathological examination of the CMNV-positive zebrafish samples revealed extensive vacuolation and karyopyknosis lesions in the retina of the eye and the midbrain mesencephalon. CMNV-like virus particles were visualized in these tissues under transmission electron microscope. Different degrees of pathological damages were also found in muscle, gills, thymus and ovarian tissues. Strong positive signals of CMNV probe were observed in these infected tissues by in situ hybridization. Overall, all results indicated that zebrafish, an acknowledged model organism, could be infected naturally by CMNV. Thus, it is needed to pay close attention to the possible interference of CMNV whether in assessment of toxic substances, or in studying the developmental characterization and the nerval function, when zebrafish was used as model animal.


Assuntos
Doenças dos Peixes/virologia , Nodaviridae/isolamento & purificação , Infecções por Vírus de RNA/veterinária , Peixe-Zebra , Animais , Nodaviridae/genética , Nodaviridae/ultraestrutura , Reação em Cadeia da Polimerase , Infecções por Vírus de RNA/patologia
2.
J Gen Virol ; 100(2): 166-175, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30461374

RESUMO

Interspecies transmission of viruses, where a pathogen crosses species barriers and jumps from its original host into a novel species, has been receiving increasing attention. Viral covert mortality disease, caused by covert mortality nodavirus (CMNV), is an emerging disease that has recently had a substantial impact on shrimp aquaculture in Southeast Asia and Latin America. While investigating the host range of CMNV, we found that this virus is also capable of infecting populations of the farmed Japanese flounder Paralichthys olivaceus, a vertebrate host. The infected fish were being raised in aquaculture facilities that were also producing marine shrimp. Through RT-nPCR, targeting the RNA-dependent RNA polymerase (RdRp) gene of CMNV, we found that 29 % of the fish sampled were positive. The amplicons were sequenced and aligned to the RdRp gene of shrimp CMNV and were found to have 98 % identity. Histopathological examination indicated that CMNV-positive fish showed vacuolation of nervous tissue in the eye and brain, as well as extensive necrosis of cardiac muscle. In situ hybridization showed positive reactions in tissues of the eye, brain, heart, liver, spleen and kidney of infected fish. Transmission electron microscopy showed the presence of CMNV-like particles in all of the above-mentioned tissues, except for brain. The novel finding of a shrimp alphanodavirus that can also infect farmed P. olivaceus indicates that this virus is capable of naturally crossing the species barrier and infecting another vertebrate. This finding will contribute to the development of efficient strategies for disease management in aquaculture.


Assuntos
Doenças dos Peixes/virologia , Linguado/virologia , Nodaviridae/isolamento & purificação , Infecções por Vírus de RNA/veterinária , Estruturas Animais/patologia , Estruturas Animais/virologia , Animais , Aquicultura , Sudeste Asiático , Histocitoquímica , Especificidade de Hospedeiro , América Latina , Nodaviridae/classificação , Nodaviridae/genética , Nodaviridae/crescimento & desenvolvimento , Penaeidae/virologia , Infecções por Vírus de RNA/virologia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência
3.
Indian J Microbiol ; 58(1): 114-117, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29434406

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus has been one of the most problematic diseases in marine shrimp aquaculture throughout Southeast Asia and Latin America. To evaluate the effectiveness of a bacteriophage (phage) treatment for AHPND, a series of bioassays were carried out in a marine shrimp (Penaeus vannamei) model using an AHPND-V. parahaemolyticus strain that is highly pathogenic to shrimp. We monitored the mortality and histopathological changes during phage treatment. Shrimps treated with phage prophylaxis and phage therapy displayed significant protection from AHPND and survived a lethal bacterial challenge.

4.
BMC Genomics ; 18(1): 191, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219347

RESUMO

Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.


Assuntos
Aquicultura/métodos , Cruzamento/métodos , Genômica/métodos , Animais , Mapeamento Cromossômico , Variação Genética , Estados Unidos
5.
J Invertebr Pathol ; 140: 1-7, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27530403

RESUMO

White feces syndrome (WFS) is an emerging problem for penaeid shrimp farming industries in SE Asia countries, Thailand, Malaysia, Vietnam, Indonesia, China, and in India. This occurrence of this syndrome is usually first evidenced by the appearance of white fecal strings floating on surface of the shrimp ponds. The gross signs of affected shrimp include the appearance of a whitish hindgut and loose carapace, and it is associated with reduced feeding and growth retardation. To investigate the nature of the white feces syndrome, samples of white feces and shrimp hepatopancreas tissue were collected from Penaeus vannamei in affected farms in Indonesia, and these were examined histologically. Within the white feces, we found densely packed spores of the microsporidian Enterocytozoon hepatopenaei (abbreviated as EHP) and relatively fewer numbers of rod-shaped bacteria. From WFS ponds, hepatopancreas samples form 30 individual shrimp were analyzed by histology and in situ hybridization. The results showed that all of the shrimp examined were infected with EHP accompanied by septic hepatopancreatic necrosis (SHPN). Midgut epithelial cells were also infected and this increased the number of tissue types being affected by EHP. By PCR, EHP was detected in all the samples analyzed from WFS-affected ponds, but not in those sampled from healthy shrimp ponds. To determine the modes of transmission for this parasite, we performed feeding and cohabitation bioassays, the results showed that EHP can be transmitted through per os feeding of EHP-infected hepatopancreas tissue to healthy shrimp and through cohabitation ofinfected and healthy shrimp. In addition, we found the use of Fumagillin-B, an antimicrobial agent, was ineffective in either reducing or eliminating EHP in infected shrimp.


Assuntos
Penaeidae/parasitologia , Frutos do Mar/parasitologia , Animais , Aquicultura , Enterocytozoon , Fezes/microbiologia , Reação em Cadeia da Polimerase
6.
Dis Aquat Organ ; 120(2): 165-71, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27409240

RESUMO

Samples of microsporidia-infected shrimps exhibiting clinical signs of cotton shrimp disease were collected from Madagascar, Mozambique, and the Kingdom of Saudi Arabia from 2005 to 2014. The tails of the infected shrimps appeared opaque and whitish; subsequent histological examination revealed the presence of cytoplasmic inclusions and mature spores in tissues of the muscle, hepatopancreas, gills, heart, and lymphoid organ. PCR analysis targeting the small subunit rDNA (SSU rDNA) from infected samples resulted in the amplification of a 1.2 kbp SSU rDNA sequence fragment 94% identical to the corresponding region in the genome of the microsporidian Perezia nelsoni, which infects populations of Penaeus setiferus in the USA. Its SSU rDNA sequence was 100% identical among isolates from Madagascar and Saudi Arabia, indicating that shrimps from the Red Sea and Indian Ocean were infected with the same microsporidium, the novel Perezia sp. A 443 bp fragment of the SSU rDNA sequence was cloned, labeled with digoxigenin and subjected to an in situ hybridization assay with tissue sections of Perezia sp.-infected Penaeus monodon from Madagascar and Mozambique, and P. indicus from Saudi Arabia. The probe hybridized to the mature spores in the hepatopancreas and muscle from which the spores had been obtained for DNA isolation. This assay was specific, showing no reaction to another microsporidium, Enterocytozoon hepatopenaei (EHP), infecting the hepatopancreas of shrimp P. stylirostris cultured in SE Asian countries. We also developed an SSU rDNA-based PCR assay, specific for the novel Perezia sp. This PCR did not react to EHP, nor to genomic DNA of shrimp and other invertebrates.


Assuntos
Microsporídios/fisiologia , Penaeidae/parasitologia , Animais , Interações Hospedeiro-Parasita , Hibridização In Situ , Microsporídios/genética , Microsporídios/isolamento & purificação , Reação em Cadeia da Polimerase/métodos
7.
Arch Virol ; 160(6): 1579-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25877821

RESUMO

New sequencing studies of the nonsegmented dsRNA genome of penaeid shrimp infectious myonecrosis virus (IMNV), a tentatively assigned member of the family Totiviridae, identified previously unread sequences at both genome termini in three previously analyzed IMNV strains, one from Brazil (the prototype strain of IMNV) and two from Indonesia. The new sequence determinations add >600 nt to the 5' end of the genomic plus strand of each strain, increasing the length of the 5' nontranslated region to at least 469-472 nt and the length of the upstream open reading frame (ORF1) translation product by at least 48 aa. These new findings are similar to recent ones for two other IMNV strains (GenBank KF836757.1 and KJ556923.1) and thereby corroborate important amendments to the full-length IMNV genome sequence.


Assuntos
Penaeidae/virologia , Totiviridae/genética , Animais , Sequência de Bases , Brasil/epidemiologia , Genoma Viral/genética , Indonésia/epidemiologia , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Regiões não Traduzidas/genética
8.
J Invertebr Pathol ; 130: 37-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26146228

RESUMO

A microsporidian parasite, Enterocytozoon hepatopenaei (abbreviated as EHP), is an emerging pathogen for penaeid shrimp. EHP has been found in several shrimp farming countries in Asia including Vietnam, Thailand, Malaysia, Indonesia and China, and is reported to be associated with growth retardation in farmed shrimp. We examined the histological features from infected shrimp collected from Vietnam and Brunei, these include the presence of basophilic inclusions in the hepatopancreas tubule epithelial cells, in which EHP is found at various developmental stages, ranging from plasmodia to mature spores. By a PCR targeting the 18S rRNA gene, a 1.1kb 18S rRNA gene fragment of EHP was amplified, and this sequence showed a 100% identity to EHP found in Thailand and China. This fragment was cloned and labeled with digoxigenin-11-dUTP, and in situ hybridized to tissue sections of infected Penaeus vannamei (from Vietnam) and P. stylirostris (Brunei). The results of in situ hybridization were specific, the probe only reacted to the EHP within the cytoplasmic inclusions, not to a Pleistophora-like microsporidium that is associated with cotton shrimp disease. Subsequently, we developed a PCR assay from this 18S rRNA gene region, this PCR is shown to be specific to EHP, did not react to 2 other parasitic pathogens, an amoeba and the cotton shrimp disease microsporidium, nor to genomic DNA of various crustaceans including polychaetes, squids, crabs and krill. EHP was detected, through PCR, in hepatopancreatic tissue, feces and water sampled from infected shrimp tanks, and in some samples of Artemia biomass.


Assuntos
Enterocytozoon/isolamento & purificação , Hibridização In Situ/métodos , Penaeidae/parasitologia , Reação em Cadeia da Polimerase/métodos , Animais , Genes Fúngicos
9.
Dis Aquat Organ ; 115(3): 245-51, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26290509

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) has caused severe mortalities in farmed penaeid shrimp throughout SE Asia and Mexico. The causative agent of AHPND is the marine bacterium Vibrio parahaemolyticus, which secretes PirA- and PirB-like binary toxin that caused deterioration in the hepatopancreas of infected shrimp. The genes responsible for the production of this toxin are located in a large plasmid residing within the bacterial cells. We analyzed the plasmid sequence from the whole genome sequences of AHPND-V. parahaemolyticus isolates and identified 2 regions that exhibit a clear geographical variation: a 4243-bp Tn3-like transposon and a 9-bp small sequence repeat (SSR). The Tn3-like transposon was only found in the isolates from Mexico and 2 unspecified Central American countries, but not in SE Asian isolates from China, Vietnam, and Thailand. We developed PCR methods to characterize AHPND-V. parahaemolyticus isolates as either Mexican-type or SE Asian-type based on the presence of the Tn3-like transposon. The SSR is found within the coding region of a hypothetical protein and has either 4, 5, or 6 repeat units. SSRs with 4 repeat units were found in isolates from Vietnam, China, and Thailand. SSRs with 5 repeat units were found in some Vietnamese isolates, and SSRs with 6 repeat units were only found in the Mexican isolates.


Assuntos
Genótipo , Hepatopâncreas/microbiologia , Penaeidae/microbiologia , Plasmídeos/genética , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidade , Animais , Sequência de Bases , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Variação Genética , Hepatopâncreas/patologia , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Virulência
10.
Dis Aquat Organ ; 113(1): 33-40, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25667334

RESUMO

The 69 kb plasmid pVPA3-1 was identified in Vibrio parahaemolyticus strain 13­028/A3 that can cause acute hepatopancreatic necrosis disease (AHPND). This disease is responsible for mass mortalities in farmed penaeid shrimp and is referred to as early mortality syndrome (EMS). The plasmid has a GC content of 45.9% with a copy number of 37 per bacterial cell as determined by comparative quantitative PCR analyses. It consists of 92 open reading frames that encode mobilization proteins, replication enzymes, transposases, virulence-associated proteins, and proteins similar to Photorhabdus insect-related (Pir) toxins. In V. parahaemolyticus, these Pir toxin-like proteins are encoded by 2 genes (pirA- and pirB-like) located within a 3.5 kb fragment flanked with inverted repeats of a transposase-coding sequence (1 kb). The GC content of these 2 genes is only 38.2%, substantially lower than that of the rest of the plasmid, which suggests that these genes were recently acquired. Based on a proteomic analysis, the pirA-like (336 bp) and pirB-like (1317 bp) genes encode for 13 and 50 kDa proteins, respectively. In laboratory cultures of V. parahaemolyticus 13-028/A3, both proteins were secreted into the culture medium. We developed a duplex PCR diagnostic method, with a detection limit of 10(5) CFU ml(-1) and targeting pirA- and pirB-like genes in this strain of V. parahaemolyticus. This PCR protocol can reliably detect AHPND-causing strains of V. parahaemolyticus and does not cross react with non-pathogenic strains or with other species of Vibrio isolated from shrimp ponds.


Assuntos
Toxinas Bacterianas/metabolismo , Penaeidae/microbiologia , Plasmídeos/metabolismo , Vibrio parahaemolyticus/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Plasmídeos/genética
11.
J Invertebr Pathol ; 113(1): 82-5, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23454062

RESUMO

White spot syndrome virus (WSSV) is highly pathogenic to penaeid shrimp. The major targets of WSSV infection are tissues of ectodermal and mesodermal embryonic origin, predominantly the cuticular epithelium and subcuticular connective tissues. Recently, we discovered a WSSV variant in Penaeus indicus that heavily infects the subcuticular connective tissue, with very slight indications in the cuticular epithelium. The variant was also unusual in that WSSV accumulations were found in the interstitial spaces of both the subcuticular connective tissue and the lymphoid organ. This WSSV variant was confirmed through immunohistochemistry with an anti-WSSV VP28 monoclonal antibody, and also by in situ hybridization with a VP28 DNA probe. By in situ hybridization, shrimp with variant and typical histology were shown a deletion in ORF94, which is characteristic of a new type of WSSV found in Saudi Arabia; apparently, the loss of this ORF is not associated with the variant's reduced capability of infecting the cuticular epithelium cells.


Assuntos
Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Animais , Epitélio/patologia , Epitélio/virologia , Imuno-Histoquímica , Arábia Saudita , Vírus da Síndrome da Mancha Branca 1/fisiologia
12.
Dis Aquat Organ ; 106(1): 1-6, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24062547

RESUMO

White spot syndrome virus (WSSV) is highly pathogenic to penaeid shrimp and has caused significant economic losses in the aquaculture industry around the world. During 2010 to 2012, WSSV caused severe mortalities in cultured penaeid shrimp in Saudi Arabia, Mozambique and Madagascar. To investigate the origins of these WSSV, we performed genotyping analyses at 5 loci: the 3 open reading frames (ORFs) 125, 94 and 75, each containing a variable number of tandem repeats (VNTR), and deletions in the 2 variable regions, VR14/15 and VR23/24. We categorized the WSSV genotype as {N125, N94, N75, ΔX14/15, ΔX23/24} where N is the number of repeat units in a specific ORF and ΔX is the length (base pair) of deletion within the variable region. We detected 4 WSSV genotypes, which were characterized by a full-length deletion in ORF94/95, a relatively small ORF75 and one specific deletion length in each variable region. There are 2 closely related genotypes in these 3 countries: {6125, del94, 375, Δ595014/15, Δ1097123/24} and {7125, del94, 375, Δ595014/15, Δ1097123/24}, where del is the full-length ORF deletion. In Saudi Arabia, 2 other related types of WSSV were also found: {6125, 794, 375, Δ595014/15, Δ1097123/24} and {8125, 1394, 375, Δ595014/15, Δ1097123/24}. The identical patterns of 3 loci in these 4 types indicate that they have a common lineage, and this suggests that the WSSV epidemics in these 3 countries were from a common source, possibly the environment.


Assuntos
Genótipo , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/genética , Animais , Aquicultura , Variação Genética , Madagáscar , Moçambique , Arábia Saudita
14.
Dis Aquat Organ ; 98(3): 185-92, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22535868

RESUMO

Pacific white shrimp Penaeus vannamei that were pre-exposed to Taura syndrome virus (TSV) and then challenged with yellow head virus (YHV) acquired partial protection from yellow head disease (YHD). Experimental infections were carried out using specific-pathogen-free (SPF) shrimp which were first exposed per os to TSV; at 27, 37 and 47 d post infection they were then challenged by injection with 1 × 104 copies of YHV per shrimp (designated the TSV-YHV group). Shrimp not infected with TSV were injected with YHV as a positive control. Survival analyses comparing the TSV-YHV and YHV (positive control) groups were conducted, and significant survival rates were found for all the time groups (p < 0.001). A higher final survival was found in the TSV-YHV group (mean 55%) than in the positive control (0%) (p < 0.05). Duplex reverse transcription quantitative PCR was used to quantify both TSV and YHV. Lower YHV copy numbers were found in the TSV-YHV group than in the positive control in pleopods (3.52 × 109 vs. 1.88 × 1010 copies µg RNA-1) (p < 0.001) and lymphoid organ (LO) samples (3.52 × 109 vs. 1.88 × 1010 copies µg RNA-1) (p < 0.01). In situ hybridization assays were conducted, and differences in the distribution of the 2 viruses in the target tissues were found. The foci of LO were infected with TSV but were not infected with YHV. This study suggests that a viral interference effect exists between TSV and YHV, which could, in part, explain the absence of YHD in the Americas, where P. vannamei are often raised in farms where TSV is present.


Assuntos
Penaeidae/virologia , Vírus de RNA/fisiologia , Animais , Epitélio/virologia , Hibridização In Situ , Fatores de Tempo
15.
Dis Aquat Organ ; 99(3): 179-85, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22832716

RESUMO

White spot syndrome virus (WSSV) and Taura syndrome virus (TSV) are highly pathogenic to penaeid shrimp and have caused significant economic losses in the shrimp culture industry around the world. During 2010 and 2011, both WSSV and TSV were found in Saudi Arabia, where they caused severe mortalities in cultured Indian white shrimp Penaeus indicus. Most outbreaks of shrimp viruses in production facilities can be traced to the importation of infected stocks or commodity shrimp. In an attempt to determine the origins of these viral outbreaks in Saudi Arabia, we performed variable number of tandem repeat (VNTR) analyses for WSSV isolates and a phylogenetic analysis for TSV isolates. From the WSSV genome, the VNTR in open reading frames (ORFs) 125 and 94 were investigated with PCR followed by DNA sequence analysis. The genotypes were categorized as {N125, N94} where N is the number of repeat units in a specific ORF, and the subscript indicates the ORF (i.e. ORFs 125 and 94 in this case). From 15 Saudi Arabia WSSV isolates, we detected 3 genotypes: {6125, 794}, {7125, del94}, and {8125, 1394}. The WSSV genotype of {7125, del94} appears to be a new variant with a 1522 bp deletion encompassing complete coding regions of ORF 94 and ORF 95 and the first 82 bp of ORF 93. For TSV genotyping, we used a phylogenetic analysis based on the amino acid sequence of TSV capsid protein 2 (CP2). We analyzed 8 Saudi Arabian isolates in addition to 36 isolates from other areas: SE Asia, Mexico, Venezuela and Belize. The Saudi Arabian TSV clustered into a new, distinct group. Based on these genotyping analyses, new WSSV and TSV genotypes were found in Saudi Arabia. The data suggest that they have come from wild shrimp Penaeus indicus from the Red Sea that are used for broodstock.


Assuntos
Genótipo , Penaeidae/virologia , Vírus de RNA/genética , Animais , Aquicultura , Filogenia , Vírus de RNA/isolamento & purificação , Vírus de RNA/patogenicidade , Arábia Saudita
16.
Microbiol Spectr ; 10(5): e0170222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121241

RESUMO

The pathogenic pVA1-type plasmids that carry pirAB toxin genes are the genetic basis for Vibrio to cause acute hepatopancreatic necrosis disease (AHPND), a lethal shrimp disease posing an urgent threat to shrimp aquaculture. Emerging evidence also demonstrate the rapid spread of pVA1-type plasmids across Vibrio species. The pVA1-type plasmids have been predicted to encode a self-encoded type IV secretion system (T4SS). Here, phylogenetic analysis indicated that the T4SS is a novel member of Trb-type. We further confirmed that the T4SS was able to mediate the conjugation of pVA1-type plasmids. A trbE gene encoding an ATPase and a traG gene annotated as a type IV coupling protein (T4CP) were characterized as key components of the T4SS. Deleting either of these 2 genes abolished the conjugative transfer of a pVA1-type plasmid from AHPND-causing Vibrio parahaemolyticus to Vibrio campbellii, which was restored by complementation of the corresponding gene. Moreover, we found that bacterial density, temperature, and nutrient levels are factors that can regulate conjugation efficiency. In conclusion, we proved that the conjugation of pVA1-type plasmids across Vibrio spp. is mediated by a novel T4SS and regulated by environmental factors. IMPORTANCE AHPND is a global shrimp bacteriosis and was listed as a notifiable disease by the World Organization for Animal Health (WOAH) in 2016, causing losses of more than USD 7 billion each year. Several Vibrio species such as V. parahaemolyticus, V. harveyi, V. campbellii, and V. owensii harboring the virulence plasmid (designated as the pVA1-type plasmid) can cause AHPND. The increasing number of Vibrio species makes prevention and control more difficult, threatening the sustainable development of the aquaculture industry. In this study, we found that the horizontal transfer of pVA1-type plasmid is mediated by a novel type IV secretion system (T4SS). Our study explained the formation mechanism of pathogen diversity in AHPND. Moreover, bacterial density, temperature, and nutrient levels can regulate horizontal efficiency. We explore new ideas for controlling the spread of virulence plasmid and form the basis of management strategies leading to the prevention and control of AHPND.


Assuntos
Penaeidae , Sistemas de Secreção Tipo IV , Vibrio parahaemolyticus , Animais , Adenosina Trifosfatases/genética , Necrose , Penaeidae/microbiologia , Filogenia , Plasmídeos/genética , Sistemas de Secreção Tipo IV/genética
17.
J Invertebr Pathol ; 108(3): 226-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21925184

RESUMO

A reovirus (tentatively designated as Callinectes sapidus reovirus, CsRV) was found in the blue crabs C. sapidus collected in Chesapeake Bay in 2005. Histological examination of hepatopancreas and gill from infected crabs revealed eosinophilic to basophilic, cytoplasmic, inclusions in hemocytes and in cells of connective tissue. A cDNA library was constructed from total RNA extracted from hemolymph of infected crabs. One clone (designated as CsRV-28) with a 532-bp insert was 75% identical in nucleotide sequence (and 95% similar in translated amino acid sequence) to the quanylytransferase gene of the Scylla serrata reovirus (SsRV). The insert of CsRV-28 was labeled with digoxigenin-11-dUTP and hybridized to sections of hepatopancreas and gill of infected C. sapidus, this probe reacted to hemocytes and cells in the connective tissue. No reaction was seen in any of the tissues prepared from uninfected crabs. Thus, this in situ hybridization procedure can be used to diagnose CsRV.


Assuntos
Braquiúros/virologia , Infecções por Reoviridae/veterinária , Reoviridae/isolamento & purificação , Animais , Brânquias/patologia , Brânquias/virologia , Hemócitos/patologia , Hemócitos/virologia , Hemolinfa/citologia , Hemolinfa/virologia , Hepatopâncreas/patologia , Hepatopâncreas/virologia , RNA Viral/análise , Infecções por Reoviridae/patologia
18.
Dis Aquat Organ ; 93(3): 191-8, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21516971

RESUMO

We describe a duplex real-time PCR assay using TaqMan probes for the simultaneous detection of monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). Both MBV and HPV are shrimp enteric viruses that infect intestinal and hepatopancreatic epithelial cells. Both viruses can cause significant mortalities and depressed growth in infected larval, postlarval, and early juvenile stages of shrimp, and thus present a risk to commercial aquaculture. In this duplex assay, we combined 2 single real-time PCRs, amplifying MBV and HPV, in a one-tube PCR reaction. The 2 viruses were distinguished by specific fluorescent labels at the 5' end of TaqMan probes: the MBV probe was labeled with dichlorodimethoxyfluorescein (JOE), and the HPV probe was labeled with 6-carboxyfluorescein (FAM). The duplex real-time PCR assay was performed in a multi-channel real-time PCR detection system, and MBV and HPV amplification signals were separately detected by the JOE and FAM channels. This duplex assay was validated to be specific to the target viruses and found to have a detection limit of single copies for each virus. The dynamic range was found to be from 1 to 1 x 10(8) copies per reaction. This assay was further applied to quantify MBV and HPV in samples of infected Penaeus monodon collected from Malaysia, Indonesia, and Thailand. The specificity and sensitivity of this duplex real-time PCR assay offer a valuable tool for routine diagnosis and quantification of MBV and HPV from both wild and farmed shrimp stocks.


Assuntos
Hepatopâncreas/virologia , Parvovirus/classificação , Parvovirus/isolamento & purificação , Penaeidae/virologia , Reação em Cadeia da Polimerase/métodos , Animais , Sequência de Bases , DNA Viral/genética , Parvovirus/genética , Sensibilidade e Especificidade
19.
Dis Aquat Organ ; 94(3): 179-87, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21790065

RESUMO

The Penaeus vannamei nodavirus (PvNV), which causes muscle necrosis in Penaeus vannamei from Belize, was identified in 2005. Infected shrimp show clinical signs of white, opaque lesions in the tail muscle. Under transmission electron microscopy, the infected cells exhibit increases in various organelles, including mitochondria, Golgi stacks, and rough endoplasmic reticulum. Cytoplasmic inclusions containing para-crystalline arrays of virions were visualized. The viral particle is spherical in shape and 19 to 27 nm in diameter. A cDNA library was constructed from total RNA extracted from infected shrimp. Through nucleotide sequencing from the cDNA clones and northern blot hybridization, the PvNV genome was shown to consist of 2 segments: RNA1 (3111 bp) and RNA2 (1183 bp). RNA1 contains 2 overlapped open reading frames (ORF A and B), which may encode a RNA-dependent RNA polymerase (RdRp) and a B2 protein, respectively. RNA2 contains a single ORF that may encode the viral capsid protein. Sequence analyses showed the presence of 4 RdRp characteristic motifs and 2 conserved domains (RNA-binding B2 protein and viral coat protein) in the PvNV genome. Phylogenetic analysis based on the translated amino acid sequence of the RdRp reveals that PvNV is a member of the genus Alphanodavirus and closely related to Macrobrachium rosenbergii nodavirus (MrNV). In a study investigating potential PvNV vectors, we monitored the presence of PvNV by RT-PCR in seabird feces and various aquatic organisms collected around a shrimp farm in Belize. PvNV was detected in mosquitofish, seabird feces, barnacles, and zooplankton, suggesting that PvNV can be spread via these carriers.


Assuntos
Nodaviridae/genética , Nodaviridae/ultraestrutura , Penaeidae/virologia , RNA Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Belize , Genoma Viral , Dados de Sequência Molecular , Filogenia , Proteínas Virais/genética , Proteínas Virais/metabolismo
20.
Animals (Basel) ; 12(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35011135

RESUMO

In a meta-transcriptome study of the giant freshwater prawn Macrobrachium rosenbergii sampled in 2018 from a hatchery, we identified a variant of Macrobrachium rosenbergii golda virus (MrGV) in postlarvae without clinical signs. The virus belongs to the family Roniviridae, and the genome of this MrGV variant, Mr-18, consisted of 28,957 nucleotides, including 4 open reading frames (ORFs): (1) ORF1a, encoding a 3C-like protein (3CLP) (4933 aa); (2) ORF1b, encoding a replicase polyprotein (2877 aa); (3) ORF2, encoding a hypothetical nucleocapsid protein (125 aa); and (4) ORF3, encoding a glycoprotein (1503 aa). ORF1a overlaps with ORF1b with 40 nucleotides, where a -1 ribosomal frameshift with slippage sequence 5'-G14925GGUUUU14931-3' produces the pp1ab polyprotein. The genomic sequence of Mr-18 shared 97.80% identity with MrGV LH1-2018 discovered in Bangladesh. The amino acid sequence identities between them were 99.30% (ORF1a), 99.60% (ORF1b), 100.00% (ORF2), and 99.80% (ORF3), respectively. Phylogenetic analysis of the RNA-dependent RNA polymerase (RdRp) proteins revealed that they clustered together and formed a separate cluster from the genus Okavirus. The finding of MrGV in China warrants further studies to determine its pathogenicity and prevalence within the region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA