Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571699

RESUMO

With the emergence of intelligent transportation and smart city system, the issue of how to perform an efficient and reasonable clustering analysis of the mass vehicle trajectories on multi-camera monitoring videos through computer vision has become a significant area of research. The traditional trajectory clustering algorithm does not consider camera position and field of view and neglects the hierarchical relation of the video object motion between the camera and the scenario, leading to poor multi-camera video object trajectory clustering. To address this challenge, this paper proposed a hierarchical clustering algorithm for multi-camera vehicle trajectories based on spatio-temporal grouping. First, we supervised clustered vehicle trajectories in the camera group according to the optimal point correspondence rule for unequal-length trajectories. Then, we extracted the starting and ending points of the video object under each group, hierarchized the trajectory according to the number of cross-camera groups, and supervised clustered the subsegment sets of different hierarchies. This method takes into account the spatial relationship between the camera and video scenario, which is not considered by traditional algorithms. The effectiveness of this approach has been proved through experiments comparing silhouette coefficient and CPU time.

2.
Sensors (Basel) ; 19(3)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678066

RESUMO

The design of urban clusters has played an important role in urban planning, but realizing the construction of these urban plans is quite a long process. Hence, how the progress is evaluated is significant for urban managers in the process of urban construction. Traditional methods for detecting urban clusters are inaccurate since the raw data is generally collected from small sample questionnaires of resident trips rather than large-scale studies. Spatiotemporal big data provides a new lens for understanding urban clusters in a natural and fine-grained way. In this article, we propose a novel method for Detecting and Evaluating Urban Clusters (DEUC) with taxi trajectories and Sina Weibo check-in data. Firstly, DEUC applies an agglomerative hierarchical clustering method to detect urban clusters based on the similarities in the daily travel space of urban residents. Secondly, DEUC infers resident demands for land-use functions using a naïve Bayes' theorem, and three indicators are adopted to assess the rationality of land-use functions in the detected clusters-namely, cross-regional travel index, commuting direction index, and fulfilled demand index. Thirdly, DEUC evaluates the progress of urban cluster construction by calculating a proposed conformance indicator. In the case study, we applied our method to detect and analyze urban clusters in Wuhan, China in the years 2009, 2014, and 2015. The results suggest the effectiveness of the proposed method, which can provide a scientific basis for urban construction.

3.
Sensors (Basel) ; 18(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400204

RESUMO

GPS trajectories generated by moving objects provide researchers with an excellent resource for revealing patterns of human activities. Relevant research based on GPS trajectories includes the fields of location-based services, transportation science, and urban studies among others. Research relating to how to obtain GPS data (e.g., GPS data acquisition, GPS data processing) is receiving significant attention because of the availability of GPS data collecting platforms. One such problem is the GPS data classification based on transportation mode. The challenge of classifying trajectories by transportation mode has approached detecting different modes of movement through the application of several strategies. From a GPS data acquisition point of view, this paper macroscopically classifies the transportation mode of GPS data into single-mode and mixed-mode. That means GPS trajectories collected based on one type of transportation mode are regarded as single-mode data; otherwise it is considered as mixed-mode data. The one big difference of classification strategy between single-mode and mixed-mode GPS data is whether we need to recognize the transition points or activity episodes first. Based on this, we systematically review existing classification methods for single-mode and mixed-mode GPS data and introduce the contributions of these methods as well as discuss their unresolved issues to provide directions for future studies in this field. Based on this review and the transportation application at hand, researchers can select the most appropriate method and endeavor to improve them.

4.
Sensors (Basel) ; 18(3)2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522456

RESUMO

Given the popularization of GPS technologies, the massive amount of spatiotemporal GPS traces collected by vehicles are becoming a new kind of big data source for urban geographic information extraction. The growing volume of the dataset, however, creates processing and management difficulties, while the low quality generates uncertainties when investigating human activities. Based on the conception of the error distribution law and position accuracy of the GPS data, we propose in this paper a data cleaning method for this kind of spatial big data using movement consistency. First, a trajectory is partitioned into a set of sub-trajectories using the movement characteristic points. In this process, GPS points indicate that the motion status of the vehicle has transformed from one state into another, and are regarded as the movement characteristic points. Then, GPS data are cleaned based on the similarities of GPS points and the movement consistency model of the sub-trajectory. The movement consistency model is built using the random sample consensus algorithm based on the high spatial consistency of high-quality GPS data. The proposed method is evaluated based on extensive experiments, using GPS trajectories generated by a sample of vehicles over a 7-day period in Wuhan city, China. The results show the effectiveness and efficiency of the proposed method.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36361300

RESUMO

Uncontrolled, large-scale human mobility can amplify a localized disease into a pandemic. Tracking changes in human travel behavior, exploring the relationship between epidemic events and intercity travel generation and attraction under policies will contribute to epidemic prevention efforts, as well as deepen understanding of the essential changes of intercity interactions in the post-epidemic era. To explore the dynamic impact of small-scale localized epidemic events and related policies on intercity travel, a spatial lag model and improved gravity models are developed by using intercity travel data. Taking the localized COVID-19 epidemic in Xi'an, China as an example, the study constructs the travel interaction characterization before or after the pandemic as well as under constraints of regular epidemic prevention policies, whereby significant impacts of epidemic events are explored. Moreover, indexes of the quantified policies are refined to the city level in China to analyze their effects on travel volumes. We highlight the non-negligible impacts of city events and related policies on intercity interaction, which can serve as a reference for travel management in case of such severe events.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , Viagem , Cidades/epidemiologia , China/epidemiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-36429848

RESUMO

Community shuttle services have the potential to alleviate traffic congestion and reduce traffic pollution caused by massive short-distance taxi-hailing trips. However, few studies have evaluated and quantified the impact of community shuttle services on urban traffic and traffic-related air pollution. In this paper, we propose a complete framework to quantitatively assess the positive impacts of community shuttle services, including route design, traffic congestion alleviation, and air pollution reduction. During the design of community shuttle services, we developed a novel method to adaptively generate shuttle stops with maximum service capacity based on residents' origin-destination (OD) data, and designed shuttle routes with minimum mileage by genetic algorithm. For traffic congestion alleviation, we identified trips that can be shifted to shuttle services and their potential changes in traffic flow. The decrease in traffic flow can alleviate traffic congestion and indirectly reduce unnecessary pollutant emissions. In terms of environmental protection, we utilized the COPERT III model and the spatial kernel density estimation method to finely analyze the reduction in traffic emissions by eco-friendly transportation modes to support detailed policymaking regarding transportation environmental issues. Taking Chengdu, China as the study area, the results indicate that: (1) the adaptively generated shuttle stops are more responsive to the travel demands of crowds compared with the existing bus stops; (2) shuttle services can replace 30.36% of private trips and provide convenience for 50.2% of commuters; (3) such eco-friendly transportation can reduce traffic emissions by 28.01% overall, and approximately 42% within residential areas.


Assuntos
Poluição do Ar , Poluição Relacionada com o Tráfego , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , Meios de Transporte , Automóveis
7.
Artigo em Inglês | MEDLINE | ID: mdl-29561813

RESUMO

The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles' mobile activities (MA) and stationary activities (SA). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA, SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles' activities in road networks.


Assuntos
Big Data , Sistemas de Informação Geográfica , Emissões de Veículos/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA