Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8003): 382-388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418878

RESUMO

Calcium (Ca2+) is an essential nutrient for plants and a cellular signal, but excessive levels can be toxic and inhibit growth1,2. To thrive in dynamic environments, plants must monitor and maintain cytosolic Ca2+ homeostasis by regulating numerous Ca2+ transporters3. Here we report two signalling pathways in Arabidopsis thaliana that converge on the activation of vacuolar Ca2+/H+ exchangers (CAXs) to scavenge excess cytosolic Ca2+ in plants. One mechanism, activated in response to an elevated external Ca2+ level, entails calcineurin B-like (CBL) Ca2+ sensors and CBL-interacting protein kinases (CIPKs), which activate CAXs by phosphorylating a serine (S) cluster in the auto-inhibitory domain. The second pathway, triggered by molecular patterns associated with microorganisms, engages the immune receptor complex FLS2-BAK1 and the associated cytoplasmic kinases BIK1 and PBL1, which phosphorylate the same S-cluster in CAXs to modulate Ca2+ signals in immunity. These Ca2+-dependent (CBL-CIPK) and Ca2+-independent (FLS2-BAK1-BIK1/PBL1) mechanisms combine to balance plant growth and immunity by regulating cytosolic Ca2+ homeostasis.


Assuntos
Arabidopsis , Cálcio , Homeostase , Imunidade Vegetal , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citosol/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Antiporters/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(47): e2316011120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967217

RESUMO

Potassium (K) is an essential macronutrient for plant growth, and its availability in the soil varies widely, requiring plants to respond and adapt to the changing K nutrient status. We show here that plant growth rate is closely correlated with K status in the medium, and this K-dependent growth is mediated by the highly conserved nutrient sensor, target of rapamycin (TOR). Further study connected the TOR complex (TORC) pathway with a low-K response signaling network consisting of calcineurin B-like proteins (CBL) and CBL-interacting kinases (CIPK). Under high K conditions, TORC is rapidly activated and shut down the CBL-CIPK low-K response pathway through regulatory-associated protein of TOR (RAPTOR)-CIPK interaction. In contrast, low-K status activates CBL-CIPK modules that in turn inhibit TORC by phosphorylating RAPTOR, leading to dissociation and thus inactivation of the TORC. The reciprocal regulation of the TORC and CBL-CIPK modules orchestrates plant response and adaptation to K nutrient status in the environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Potássio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio da Dieta , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 190(2): 1307-1320, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35809075

RESUMO

Magnesium (Mg) is an essential metal for chlorophyll biosynthesis and other metabolic processes in plant cells. Mg is largely stored in the vacuole of various cell types and remobilized to meet cytoplasmic demand. However, the transport proteins responsible for mobilizing vacuolar Mg2+ remain unknown. Here, we identified two Arabidopsis (Arabidopsis thaliana) Mg2+ transporters (MAGNESIUM TRANSPORTER 1 and 2; MGT1 and MGT2) that facilitate Mg2+ mobilization from the vacuole, especially when external Mg supply is limited. In addition to a high degree of sequence similarity, MGT1 and MGT2 exhibited overlapping expression patterns in Arabidopsis tissues, implying functional redundancy. Indeed, the mgt1 mgt2 double mutant, but not mgt1 and mgt2 single mutants, showed exaggerated growth defects as compared to the wild type under low-Mg conditions, in accord with higher expression levels of Mg-starvation gene markers in the double mutant. However, overall Mg level was also higher in mgt1 mgt2, suggesting a defect in Mg2+ remobilization in response to Mg deficiency. Consistently, MGT1 and MGT2 localized to the tonoplast and rescued the yeast (Saccharomyces cerevisiae) mnr2Δ (manganese resistance 2) mutant strain lacking the vacuolar Mg2+ efflux transporter. In addition, disruption of MGT1 and MGT2 suppressed high-Mg sensitivity of calcineurin B-like 2 and 3 (cbl2 cbl3), a mutant defective in vacuolar Mg2+ sequestration, suggesting that vacuolar Mg2+ influx and efflux processes are antagonistic in a physiological context. We further crossed mgt1 mgt2 with mgt6, which lacks a plasma membrane MGT member involved in Mg2+ uptake, and found that the triple mutant was more sensitive to low-Mg conditions than either mgt1 mgt2 or mgt6. Hence, Mg2+ uptake (via MGT6) and vacuolar remobilization (through MGT1 and MGT2) work synergistically to achieve Mg2+ homeostasis in plants, especially under low-Mg supply in the environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiência de Magnésio , Aclimatação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcineurina/genética , Proteínas de Transporte/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Magnésio/metabolismo , Deficiência de Magnésio/metabolismo , Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
4.
Heart Fail Rev ; 28(2): 331-345, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792818

RESUMO

Heart failure (HF) is one of the leading causes of global health impairment. Current drugs are still limited in their effectiveness in the treatment and reversal of HF: for example, drugs for acute HF (AHF) help to reduce congestion and relieve symptoms, but they do little to improve survival; most conventional drugs for HF with preserved ejection fraction (HFpEF) do not improve the prognosis; and drugs have extremely limited effects on advanced HF. In recent years, progress in device therapies has bridged this gap to a certain extent. For example, the availability of the left ventricular assist device has brought new options to numerous advanced HF patients. In addition to this recognizable device, a range of promising novel devices with preclinical or clinical trial results are emerging that seek to treat or reverse HF by providing circulatory support, repairing structural abnormalities in the heart, or providing electrical stimulation. These devices may be useful for the treatment of HF. In this review, we summarized recent advances in novel devices for AHF, HFpEF, and HF with reduced ejection fraction (HFrEF) with the aim of providing a reference for clinical treatment and inspiration for novel device development.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico/fisiologia , Prognóstico , Função Ventricular Esquerda/fisiologia
5.
New Phytol ; 236(2): 464-478, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35776059

RESUMO

Magnesium (Mg2+ ) serves as a cofactor for a number of photosynthetic enzymes in the chloroplast, and is the central atom of the Chl molecule. However, little is known about the molecular mechanism of Mg2+ transport across the chloroplast envelope. Here, we report the functional characterization of two transport proteins in Arabidopsis: Magnesium Release 8 (MGR8) and MGR9, of the ACDP/CNNM family, which is evolutionarily conserved across all lineages of living organisms. Both MGR8 and MGR9 genes were expressed ubiquitously, and their encoded proteins were localized in the inner envelope of chloroplasts. Mutations of MGR8 and MGR9 together, but neither of them alone, resulted in albino ovules and chlorotic seedlings. Further analysis revealed severe defects in thylakoid biogenesis and assembly of photosynthetic complexes in the double mutant. Both MGR8 and MGR9 functionally complemented the growth of the Salmonella typhimurium mutant strain MM281, which lacks Mg2+ uptake capacity. The embryonic and early seedling defects of the mgr8/mgr9 double mutant were rescued by the expression of MGR9 under the embryo-specific ABI3 promoter. The partially rescued mutant plants were hypersensitive to Mg2+ deficient conditions and contained less Mg2+ in their chloroplasts than wild-type plants. Taken together, we conclude that MGR8 and MGR9 serve as Mg2+ transporters and are responsible for chloroplast Mg2+ uptake.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Plântula/metabolismo , Tilacoides/metabolismo
6.
Opt Express ; 30(15): 26534-26543, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236849

RESUMO

Flexible integrated photonics is a rapidly emerging technology with a wide range of possible applications in the fields of flexible optical interconnects, conformal multiplexing sensing, health monitoring, and biotechnology. One major challenge in developing mechanically flexible integrated photonics is the functional component within an integrated photonic circuit with superior performance. In this work, several essential flexible passive devices for such a circuit were designed and fabricated based on a multi-neutral-axis mechanical design and a monolithic integration technique. The propagation loss of the waveguide is calculated to be 4.2 dB/cm. In addition, we demonstrate a microring resonator, waveguide crossing, multimode interferometer (MMI), and Mach-Zehnder interferometer (MZI) for use at 1.55 µm, each exhibiting superior optical and mechanical performance. These results represent a significant step towards further exploring a complete flexible photonic integrated circuit.

7.
New Phytol ; 225(4): 1606-1617, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31569267

RESUMO

Two types of tonoplast proton pumps, H+ -pyrophosphatase (V-PPase) and the H+ -ATPase (V-ATPase), establish the proton gradient that powers molecular traffic across the tonoplast thereby facilitating turgor regulation and nutrient homeostasis. However, how proton pumps regulate development remains unclear. In this study, we investigated the function of two types of proton pumps in Arabidopsis embryo development and pattern formation. While disruption of either V-PPase or V-ATPase had no obvious effect on plant embryo development, knocking out both resulted in severe defects in embryo pattern formation from the early stage. While the first division in wild-type zygote was asymmetrical, a nearly symmetrical division occurred in the mutant, followed by abnormal pattern formation at all stages of embryo development. The embryonic defects were accompanied by dramatic differences in vacuole morphology and distribution, as well as disturbed localisation of PIN1. The development of mutant cotyledons and root, and the auxin response of mutant seedlings supported the hypothesis that mutants lacking tonoplast proton pumps were defective in auxin transport and distribution. Taking together, we proposed that two tonoplast proton pumps are required for vacuole morphology and PIN1 localisation, thereby controlling vacuole and auxin-related developmental processes in Arabidopsis embryos and seedlings.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Desenvolvimento Embrionário/fisiologia , Pirofosfatase Inorgânica/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Gravitropismo/fisiologia , Pirofosfatase Inorgânica/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Naftóis/farmacologia , Ftalimidas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Transporte Proteico
8.
Plant Physiol ; 181(2): 743-761, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31350362

RESUMO

Plants cope with aluminum (Al) toxicity by secreting organic acids (OAs) into the apoplastic space, which is driven by proton (H+) pumps. Here, we show that mutation of vacuolar H+-translocating adenosine triphosphatase (H+-ATPase) subunit a2 (VHA-a2) and VHA-a3 of the vacuolar H+-ATPase enhances Al resistance in Arabidopsis (Arabidopsis thaliana). vha-a2 vha-a3 mutant plants displayed less Al sensitivity with less Al accumulation in roots compared to wild-type plants when grown under excessive Al3+ Interestingly, in response to Al3+ exposure, plants showed decreased vacuolar H+ pump activity and reduced expression of VHA-a2 and VHA-a3, which were accompanied by increased plasma membrane H+ pump (PM H+-ATPase) activity. Genetic analysis of plants with altered PM H+-ATPase activity established a correlation between Al-induced increase in PM H+-ATPase activity and enhanced Al resistance in vha-a2 vha-a3 plants. We determined that external OAs, such as malate and citrate whose secretion is driven by PM H+-ATPase, increased with PM H+-ATPase activity upon Al stress. On the other hand, elevated secretion of malate and citrate in vha-a2 vha-a3 root exudates appeared to be independent of OAs metabolism and tolerance of phosphate starvation but was likely related to impaired vacuolar sequestration. These results suggest that coordination of vacuolar H+-ATPase and PM H+-ATPase dictates the distribution of OAs into either the vacuolar lumen or the apoplastic space that, in turn, determines Al tolerance capacity in plants.


Assuntos
Alumínio/toxicidade , Arabidopsis/metabolismo , Ácidos Carboxílicos/metabolismo , Raízes de Plantas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Alumínio/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pirofosfatase Inorgânica/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/genética
9.
PLoS Biol ; 15(12): e2004310, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29283991

RESUMO

Auxin controls a myriad of plant developmental processes and plant response to environmental conditions. Precise trafficking of auxin transporters is essential for auxin homeostasis in plants. Here, we report characterization of Arabidopsis CTL1, which controls seedling growth and apical hook development by regulating intracellular trafficking of PIN-type auxin transporters. The CTL1 gene encodes a choline transporter-like protein with an expression pattern highly correlated with auxin distribution and is enriched in shoot and root apical meristems, lateral root primordia, the vascular system, and the concave side of the apical hook. The choline transporter-like 1 (CTL1) protein is localized to the trans-Golgi network (TGN), prevacuolar compartment (PVC), and plasma membrane (PM). Disruption of CTL1 gene expression alters the trafficking of 2 auxin efflux transporters-Arabidopsis PM-located auxin efflux transporter PIN-formed 1 (PIN1) and Arabidopsis PM-located auxin efflux transporter PIN-formed 3 (PIN3)-to the PM, thereby affecting auxin distribution and plant growth and development. We further found that phospholipids, sphingolipids, and other membrane lipids were significantly altered in the ctl1 mutant, linking CTL1 function to lipid homeostasis. We propose that CTL1 regulates protein sorting from the TGN to the PM through its function in lipid homeostasis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Glicosídeo Hidrolases/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Transporte Proteico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Homeostase , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(10): E2036-E2045, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28202726

RESUMO

The central vacuole in a plant cell occupies the majority of the cellular volume and plays a key role in turgor regulation. The vacuolar membrane (tonoplast) contains a large number of transporters that mediate fluxes of solutes and water, thereby adjusting cell turgor in response to developmental and environmental signals. We report that two tonoplast Detoxification efflux carrier (DTX)/Multidrug and Toxic Compound Extrusion (MATE) transporters, DTX33 and DTX35, function as chloride channels essential for turgor regulation in Arabidopsis Ectopic expression of each transporter in Nicotiana benthamiana mesophyll cells elicited a large voltage-dependent inward chloride current across the tonoplast, showing that DTX33 and DTX35 each constitute a functional channel. Both channels are highly expressed in Arabidopsis tissues, including root hairs and guard cells that experience rapid turgor changes during root-hair elongation and stomatal movements. Disruption of these two genes, either in single or double mutants, resulted in shorter root hairs and smaller stomatal aperture, with double mutants showing more severe defects, suggesting that these two channels function additively to facilitate anion influx into the vacuole during cell expansion. In addition, dtx35 single mutant showed lower fertility as a result of a defect in pollen-tube growth. Indeed, patch-clamp recording of isolated vacuoles indicated that the inward chloride channel activity across the tonoplast was impaired in the double mutant. Because MATE proteins are widely known transporters of organic compounds, finding MATE members as chloride channels expands the functional definition of this large family of transporters.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Canais de Cloreto/genética , Regulação da Expressão Gênica de Plantas , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/genética , Raízes de Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Canais de Cloreto/metabolismo , Membranas Intracelulares/ultraestrutura , Potenciais da Membrana/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Pressão Osmótica , Técnicas de Patch-Clamp , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Raízes de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura
11.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171866

RESUMO

Phosphate transporters (PHTs) play pivotal roles in phosphate (Pi) acquisition from the soil and distribution throughout a plant. However, there is no comprehensive genomic analysis of the PHT families in Camelina sativa, an emerging oilseed crop. In this study, we identified 73 CsPHT members belonging to the five major PHT families. A whole-genome triplication event was the major driving force for CsPHT expansion, with three homoeologs for each Arabidopsis ortholog. In addition, tandem gene duplications on chromosome 11, 18 and 20 further enlarged the CsPHT1 family beyond the ploidy norm. Phylogenetic analysis showed clustering of the CsPHT1 and CsPHT4 family members into four distinct groups, while CsPHT3s and CsPHT5s were clustered into two distinct groups. Promoter analysis revealed widespread cis-elements for low-P response (P1BS) specifically in CsPHT1s, consistent with their function in Pi acquisition and translocation. In silico RNA-seq analysis revealed more ubiquitous expression of several CsPHT1 genes in various tissues, whereas CsPHT2s and CsPHT4s displayed preferential expression in leaves. While several CsPHT3s were expressed in germinating seeds, most CsPHT5s were expressed in floral and seed organs. Suneson, a popular Camelina variety, displayed better tolerance to low-P than another variety, CS-CROO, which could be attributed to the higher expression of several CsPHT1/3/4/5 family genes in shoots and roots. This study represents the first effort in characterizing CsPHT transporters in Camelina, a promising polyploid oilseed crop that is highly tolerant to abiotic stress and low-nutrient status, and may populate marginal soils for biofuel production.


Assuntos
Camellia/genética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Camellia/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poliploidia , Sementes/metabolismo , Estresse Fisiológico/genética
12.
Plant Cell Environ ; 42(2): 673-687, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30255504

RESUMO

Multiple transporters and channels mediate cation transport across the plasma membrane and tonoplast to regulate ionic homeostasis in plant cells. However, much less is known about the molecular function of transporters that facilitate cation transport in other organelles such as Golgi. We report here that Arabidopsis KEA4, KEA5, and KEA6, members of cation/proton antiporters-2 (CPA2) superfamily were colocalized with the known Golgi marker, SYP32-mCherry. Although single kea4,5,6 mutants showed similar phenotype as the wild type under various conditions, kea4/5/6 triple mutants showed hypersensitivity to low pH, high K+ , and high Na+ and displayed growth defects in darkness, suggesting that these three KEA-type transporters function redundantly in controlling etiolated seedling growth and ion homeostasis. Detailed analysis indicated that the kea4/5/6 triple mutant exhibited cell wall biosynthesis defect during the rapid etiolated seedling growth and under high K+ /Na+ condition. The cell wall-derived pectin homogalacturonan (GalA)3 partially suppressed the growth defects and ionic toxicity in the kea4/5/6 triple mutants when grown in the dark but not in the light conditions. Together, these data support the hypothesis that the Golgi-localized KEAs play key roles in the maintenance of ionic and pH homeostasis, thereby facilitating Golgi function in cell wall biosynthesis during rapid etiolated seedling growth and in coping with high K+ /Na+ stress.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Complexo de Golgi/metabolismo , Plântula/crescimento & desenvolvimento , Arabidopsis/metabolismo , Escuridão , Homeostase , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real
13.
Int J Mol Sci ; 20(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100786

RESUMO

In Arabidopsis, the salt overly sensitive (SOS) pathway, consisting of calcineurin B-like protein 4 (CBL4/SOS3), CBL-interacting protein kinase 24 (CIPK24/SOS2) and SOS1, has been well defined as a crucial mechanism to control cellular ion homoeostasis by extruding Na+ to the extracellular space, thus conferring salt tolerance in plants. CBL10 also plays a critical role in salt tolerance possibly by the activation of Na+ compartmentation into the vacuole. However, the functional relationship of the SOS and CBL10-regulated processes remains unclear. Here, we analyzed the genetic interaction between CBL4 and CBL10 and found that the cbl4 cbl10 double mutant was dramatically more sensitive to salt as compared to the cbl4 and cbl10 single mutants, suggesting that CBL4 and CBL10 each directs a different salt-tolerance pathway. Furthermore, the cbl4 cbl10 and cipk24 cbl10 double mutants were more sensitive than the cipk24 single mutant, suggesting that CBL10 directs a process involving CIPK24 and other partners different from the SOS pathway. Although the cbl4 cbl10, cipk24 cbl10, and sos1 cbl10 double mutants showed comparable salt-sensitive phenotype to sos1 at the whole plant level, they all accumulated much lower Na+ as compared to sos1 under high salt conditions, suggesting that CBL10 regulates additional unknown transport processes that play distinct roles from the SOS1 in Na+ homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Tolerância ao Sal/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Regulação da Expressão Gênica de Plantas , Homeostase , Mutação , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Salino/fisiologia , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Vacúolos/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(10): 3134-9, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25646412

RESUMO

Although Mg(2+) is essential for a myriad of cellular processes, high levels of Mg(2+) in the environment, such as those found in serpentine soils, become toxic to plants. In this study, we identified two calcineurin B-like (CBL) proteins, CBL2 and CBL3, as key regulators for plant growth under high-Mg conditions. The Arabidopsis mutant lacking both CBL2 and CBL3 displayed severe growth retardation in the presence of excess Mg(2+), implying elevated Mg(2+) toxicity in these plants. Unexpectedly, the cbl2 cbl3 mutant plants retained lower Mg content than wild-type plants under either normal or high-Mg conditions, suggesting that CBL2 and CBL3 may be required for vacuolar Mg(2+) sequestration. Indeed, patch-clamp analysis showed that the cbl2 cbl3 mutant exhibited reduced Mg(2+) influx into the vacuole. We further identified four CBL-interacting protein kinases (CIPKs), CIPK3, -9, -23, and -26, as functionally overlapping components downstream of CBL2/3 in the signaling pathway that facilitates Mg(2+) homeostasis. The cipk3 cipk9 cipk23 cipk26 quadruple mutant, like the cbl2 cbl3 double mutant, was hypersensitive to high-Mg conditions; furthermore, CIPK3/9/23/26 physically interacted with CBL2/3 at the vacuolar membrane. Our results thus provide evidence that CBL2/3 and CIPK3/9/23/26 constitute a multivalent interacting network that regulates the vacuolar sequestration of Mg(2+), thereby protecting plants from Mg(2+) toxicity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Homeostase , Magnésio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Ligação Proteica
15.
Int J Mol Sci ; 19(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453498

RESUMO

Magnesium (Mg2+) is an essential nutrient in all organisms. However, high levels of Mg2+ in the environment are toxic to plants. In this study, we identified the vacuolar-type H⁺-pyrophosphatase, AVP1, as a critical enzyme for optimal plant growth under high-Mg conditions. The Arabidopsis avp1 mutants displayed severe growth retardation, as compared to the wild-type plants upon excessive Mg2+. Unexpectedly, the avp1 mutant plants retained similar Mg content to wild-type plants under either normal or high Mg conditions, suggesting that AVP1 may not directly contribute to Mg2+ homeostasis in plant cells. Further analyses confirmed that the avp1 mutant plants contained a higher pyrophosphate (PPi) content than wild type, coupled with impaired vacuolar H⁺-pyrophosphatase activity. Interestingly, expression of the Saccharomyces cerevisiae cytosolic inorganic pyrophosphatase1 gene IPP1, which facilitates PPi hydrolysis but not proton translocation into vacuole, rescued the growth defects of avp1 mutants under high-Mg conditions. These results provide evidence that high-Mg sensitivity in avp1 mutants possibly resulted from elevated level of cytosolic PPi. Moreover, genetic analysis indicated that mutation of AVP1 was additive to the defects in mgt6 and cbl2 cbl3 mutants that are previously known to be impaired in Mg2+ homeostasis. Taken together, our results suggest AVP1 is required for cellular PPi homeostasis that in turn contributes to high-Mg tolerance in plant cells.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Pirofosfatase Inorgânica/metabolismo , Magnésio/toxicidade , Vacúolos/enzimologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Teste de Complementação Genética , Homeostase , Pirofosfatase Inorgânica/genética , Mutação/genética , Fenótipo , Vacúolos/efeitos dos fármacos
16.
Plant Cell Physiol ; 58(7): 1143-1150, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444222

RESUMO

Plant receptor-like kinases (RLKs) are involved in nearly all aspects of plant life including growth, development and stress response. Recent studies show that FERONIA (FER), a CrRLK1L subfamily member, is a versatile regulator of cell expansion and serves as a signaling node mediating cross-talk among multiple phytohormones. As a receptor for the RALF (Rapid Alkalinization Factor) peptide ligand, FER triggers a downstream signaling cascade that leads to a rapid cytoplasmic calcium increase and inhibition of cell elongation in plants. Moreover, FER recruits and activates small G proteins through the guanine nucleotide exchange factor-Rho-like GTPase (GEF-ROP) network to regulate both auxin and ABA responses that cross-talk with the RALF signaling pathway. One of the downstream processes is NADPH oxidase-dependent ROS (reactive oxygen species) production that modulates cell expansion and responses to both abiotic and biotic stress responses. Intriguingly, some pathogenic fungi produce RALF-like peptides to activate the host FER-mediated pathway and thus increase their virulence and cause plant disease. Studies so far indicate that FER may serve as a central node of the cell signaling network that integrates a number of regulatory pathways targeting cell expansion, energy metabolism and stress responses. This review focuses on recent findings and their implications in the context of FER action as a modulator that is crucial for hormone signaling and stress responses.


Assuntos
Fosfotransferases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/enzimologia , Transdução de Sinais , Estresse Fisiológico , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Modelos Biológicos , Fosfotransferases/genética , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Espécies Reativas de Oxigênio/metabolismo
17.
Plant Biotechnol J ; 15(10): 1309-1321, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28258966

RESUMO

Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate-limiting step in the BR-biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast-growing trees with improved wood production.


Assuntos
Brassinosteroides/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Populus/enzimologia , Madeira/crescimento & desenvolvimento , Sequência de Aminoácidos , Biomassa , Sistema Enzimático do Citocromo P-450/genética , Solanum lycopersicum , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Populus/genética , Populus/crescimento & desenvolvimento , Árvores/enzimologia , Árvores/crescimento & desenvolvimento , Madeira/citologia
18.
J Exp Bot ; 68(12): 3091-3105, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27965362

RESUMO

Potassium (K) and phosphate (Pi) are both macronutrients essential for plant growth and crop production, but the unrenewable resources of phosphorus rock and potash have become limiting factors for food security. One critical measure to help solve this problem is to improve nutrient use efficiency (NUE) in plants by understanding and engineering genetic networks for ion uptake, translocation, and storage. Plants have evolved multiple systems to adapt to various nutrient conditions for growth and production. Within the NUE networks, transport proteins and their regulators are the primary players for maintaining nutrient homeostasis and could be utilized to engineer high NUE traits in crop plants. A large number of publications have detailed K+ and Pi transport proteins in plants over the past three decades. Meanwhile, the discovery and validation of their regulatory mechanisms are fast-track topics for research. Here, we provide an overview of K+ and Pi transport proteins and their regulatory mechanisms, which participate in the uptake, translocation, storage, and recycling of these nutrients in plants.


Assuntos
Produtos Agrícolas/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Transporte Biológico , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Homeostase
19.
Plant Cell ; 26(5): 2234-2248, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24794135

RESUMO

Although magnesium (Mg2+) is the most abundant divalent cation in plant cells, little is known about the mechanism of Mg2+ uptake by plant roots. Here, we report a key function of Magnesium Transport6 (MGT6)/Mitochondrial RNA Splicing2-4 in Mg2+ uptake and low-Mg2+ tolerance in Arabidopsis thaliana. MGT6 is expressed mainly in plant aerial tissues when Mg2+ levels are high in the soil or growth medium. Its expression is highly induced in the roots during Mg2+ deficiency, suggesting a role for MGT6 in response to the low-Mg2+ status in roots. Silencing of MGT6 in transgenic plants by RNA interference (RNAi) resulted in growth retardation under the low-Mg2+ condition, and the phenotype was restored to normal growth after RNAi plants were transferred to Mg2+-sufficient medium. RNAi plants contained lower levels of Mg2+ compared with wild-type plants under low Mg2+ but not under Mg2+-sufficient conditions. Further analysis indicated that MGT6 was localized in the plasma membrane and played a key role in Mg2+ uptake by roots under Mg2+ limitation. We conclude that MGT6 mediates Mg2+ uptake in roots and is required for plant adaptation to a low-Mg2+ environment.

20.
Plant Mol Biol ; 90(4-5): 345-58, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780904

RESUMO

The phytohormone ethylene (ET) is a crucial signaling molecule that induces the biosynthesis of shikonin and its derivatives in Lithospermum erythrorhizon shoot cultures. However, the molecular mechanism and the positive regulators involved in this physiological process are largely unknown. In this study, the function of LeACS-1, a key gene encoding the 1-aminocyclopropane-1-carboxylic acid synthase for ET biosynthesis in L. erythrorhizon hairy roots, was characterized by using overexpression and RNA interference (RNAi) strategies. The results showed that overexpression of LeACS-1 significantly increased endogenous ET concentration and shikonin production, consistent with the up-regulated genes involved in ET biosynthesis and transduction, as well as the genes related to shikonin biosynthesis. Conversely, RNAi of LeACS-1 effectively decreased endogenous ET concentration and shikonin production and down-regulated the expression level of above genes. Correlation analysis showed a significant positive linear relationship between ET concentration and shikonin production. All these results suggest that LeACS-1 acts as a positive regulator of ethylene-induced shikonin biosynthesis in L. erythrorhizon hairy roots. Our work not only gives new insights into the understanding of the relationship between ET and shikonin biosynthesis, but also provides an efficient genetic engineering target gene for secondary metabolite production in non-model plant L. erythrorhizon.


Assuntos
Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/fisiologia , Lithospermum/metabolismo , Liases/metabolismo , Naftoquinonas/metabolismo , Raízes de Plantas/metabolismo , Clonagem Molecular , Biologia Computacional , DNA Complementar/genética , DNA Complementar/metabolismo , Liases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA