Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nature ; 619(7969): 293-299, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286604

RESUMO

Although organic-inorganic hybrid materials have played indispensable roles as mechanical1-4, optical5,6, electronic7,8 and biomedical materials9-11, isolated organic-inorganic hybrid molecules (at present limited to covalent compounds12,13) are seldom used to prepare hybrid materials, owing to the distinct behaviours of organic covalent bonds14 and inorganic ionic bonds15 in molecular construction. Here we integrate typical covalent and ionic bonds within one molecule to create an organic-inorganic hybrid molecule, which can be used for bottom-up syntheses of hybrid materials. A combination of the organic covalent thioctic acid (TA) and the inorganic ionic calcium carbonate oligomer (CCO) through an acid-base reaction provides a TA-CCO hybrid molecule with the representative molecular formula TA2Ca(CaCO3)2. Its dual reactivity involving copolymerization of the organic TA segment and inorganic CCO segment generates the respective covalent and ionic networks. The two networks are interconnected through TA-CCO complexes to form a covalent-ionic bicontinuous structure within the resulting hybrid material, poly(TA-CCO), which unifies paradoxical mechanical properties. The reversible binding of Ca2+-CO32- bonds in the ionic network and S-S bonds in the covalent network ensures material reprocessability with plastic-like mouldability while preserving thermal stability. The coexistence of ceramic-like, rubber-like and plastic-like behaviours within poly(TA-CCO) goes beyond current classifications of materials to generate an 'elastic ceramic plastic'. The bottom-up creation of organic-inorganic hybrid molecules provides a feasible pathway for the molecular engineering of hybrid materials, thereby supplementing the classical methodology used for the manufacture of organic-inorganic hybrid materials.

2.
Nature ; 612(7940): 546-554, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477541

RESUMO

Insufficient intracellular anabolism is a crucial factor involved in many pathological processes in the body1,2. The anabolism of intracellular substances requires the consumption of sufficient intracellular energy and the production of reducing equivalents. ATP acts as an 'energy currency' for biological processes in cells3,4, and the reduced form of NADPH is a key electron donor that provides reducing power for anabolism5. Under pathological conditions, it is difficult to correct impaired anabolism and to increase insufficient levels of ATP and NADPH to optimum concentrations1,4,6-8. Here we develop an independent and controllable nanosized plant-derived photosynthetic system based on nanothylakoid units (NTUs). To enable cross-species applications, we use a specific mature cell membrane (the chondrocyte membrane (CM)) for camouflage encapsulation. As proof of concept, we demonstrate that these CM-NTUs enter chondrocytes through membrane fusion, avoid lysosome degradation and achieve rapid penetration. Moreover, the CM-NTUs increase intracellular ATP and NADPH levels in situ following exposure to light and improve anabolism in degenerated chondrocytes. They can also systemically correct energy imbalance and restore cellular metabolism to improve cartilage homeostasis and protect against pathological progression of osteoarthritis. Our therapeutic strategy for degenerative diseases is based on a natural photosynthetic system that can controllably enhance cell anabolism by independently providing key energy and metabolic carriers. This study also provides an enhanced understanding of the preparation and application of bioorganisms and composite biomaterials for the treatment of disease.


Assuntos
Condrócitos , Osteoartrite , Fotossíntese , Plantas , Humanos , Trifosfato de Adenosina/metabolismo , Condrócitos/metabolismo , NADP/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/terapia , Plantas/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Homeostase , Metabolismo Energético , Fusão de Membrana
3.
Nature ; 574(7778): 394-398, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31619792

RESUMO

Inorganic materials have essential roles in society, including in building construction, optical devices, mechanical engineering and as biomaterials1-4. However, the manufacture of inorganic materials is limited by classical crystallization5, which often produces powders rather than monoliths with continuous structures. Several precursors that enable non-classical crystallization-such as pre-nucleation clusters6-8, dense liquid droplets9,10, polymer-induced liquid precursor phases11-13 and nanoparticles14-have been proposed to improve the construction of inorganic materials, but the large-scale application of these precursors in monolith preparations is limited by availability and by practical considerations. Inspired by the processability of polymeric materials that can be manufactured by crosslinking monomers or oligomers15, here we demonstrate the construction of continuously structured inorganic materials by crosslinking ionic oligomers. Using calcium carbonate as a model, we obtain a large quantity of its oligomers (CaCO3)n with controllable molecular weights, in which triethylamine acts as a capping agent to stabilize the oligomers. The removal of triethylamine initiates crosslinking of the (CaCO3)n oligomers, and thus the rapid construction of pure monolithic calcium carbonate and even single crystals with a continuous internal structure. The fluid-like behaviour of the oligomer precursor enables it to be readily processed or moulded into shapes, even for materials with structural complexity and variable morphologies. The material construction strategy that we introduce here arises from a fusion of classic inorganic and polymer chemistry, and uses the same cross-linking process for the manufacture the materials.


Assuntos
Carbonato de Cálcio/química , Química Inorgânica , Ciência dos Materiais/métodos , Polímeros/química
4.
Proc Natl Acad Sci U S A ; 117(7): 3397-3404, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015117

RESUMO

Organisms use inorganic ions and macromolecules to regulate crystallization from amorphous precursors, endowing natural biominerals with complex morphologies and enhanced properties. The mechanisms by which modifiers enable these shape-preserving transformations are poorly understood. We used in situ liquid-phase transmission electron microscopy to follow the evolution from amorphous calcium carbonate to calcite in the presence of additives. A combination of contrast analysis and infrared spectroscopy shows that Mg ions, which are widely present in seawater and biological fluids, alter the transformation pathway in a concentration-dependent manner. The ions bring excess (structural) water into the amorphous bulk so that a direct transformation is triggered by dehydration in the absence of morphological changes. Molecular dynamics simulations suggest Mg-incorporated water induces structural fluctuations, allowing transformation without the need to nucleate a separate crystal. Thus, the obtained calcite retains the original morphology of the amorphous state, biomimetically achieving the morphological control of crystals seen in biominerals.

5.
J Nanobiotechnology ; 19(1): 385, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809623

RESUMO

Demineralization of hard tooth tissues leads to dental caries, which cause health problems and economic burdens throughout the world. A biomimetic mineralization strategy is expected to reverse early dental caries. Commercially available anti-carious mineralizing products lead to inconclusive clinical results because they cannot continuously replenish the required calcium and phosphate resources. Herein, we prepared a mineralizing film consisting of hydroxypropylmethylcellulose (HPMC) and polyaspartic acid-stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles. HPMC which contains multiple hydroxyl groups is a film-forming material that can be desiccated to form a dry film. In a moist environment, this film gradually changes into a gel. HPMC was used as the carrier of PAsp-ACP nanoparticles to deliver biomimetic mineralization. Our results indicated that the hydroxyl and methoxyl groups of HPMC could assist the stability of PAsp-ACP nanoparticles and maintain their biomimetic mineralization activity. The results further demonstrated that the bioinspired mineralizing film induced the early mineralization of demineralized dentin after 24 h with increasing mineralization of the whole demineralized dentin (3-4 µm) after 72-96 h. Furthermore, these results were achieved without any cytotoxicity or mucosa irritation. Therefore, this mineralizing film shows promise for use in preventive dentistry due to its efficient mineralization capability.


Assuntos
Materiais Biomiméticos , Fosfatos de Cálcio , Cárie Dentária/metabolismo , Derivados da Hipromelose , Calcificação de Dente/efeitos dos fármacos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacocinética , Fosfatos de Cálcio/farmacologia , Células Cultivadas , Dentina/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Masculino , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , Coelhos
6.
Angew Chem Int Ed Engl ; 60(12): 6509-6517, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33427367

RESUMO

Cancer chemotherapy typically relies on drug endocytosis and inhibits tumor cell proliferation via intracellular pathways; however, severe side effects may arise. In this study, we performed a first attempt to develop macromolecular-induced extracellular chemotherapy involving biomineralization by absorbing calcium from the blood through a new type of drug, polysialic acid conjugated with folate (folate-polySia), which selectively induces biogenic mineral formation on tumor cells and results in the pathological calcification of tumors. The macromolecule-initiated extracellular calcification causes cancer cell death mainly by intervening with the glycolysis process in cancer cells. Systemic administration of folate-polySia inhibited cervical and breast tumor growth and dramatically improved survival rates in mice. This study provides an extracellular therapeutic approach for malignant tumor diseases via calcification that is ready for clinical trials and offers new insights into macromolecular anticancer drug discovery.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ácido Fólico/farmacologia , Substâncias Macromoleculares/farmacologia , Ácidos Siálicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ácido Fólico/administração & dosagem , Ácido Fólico/química , Humanos , Substâncias Macromoleculares/administração & dosagem , Substâncias Macromoleculares/química , Estrutura Molecular , Ácidos Siálicos/administração & dosagem , Ácidos Siálicos/química , Relação Estrutura-Atividade
7.
J Am Chem Soc ; 142(41): 17543-17556, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32960592

RESUMO

Osteoporosis is a global chronic disease characterized by severe bone loss and high susceptibility to fragile fracture. It is widely accepted that the origin acidified microenvironment created by excessive osteoclasts causes irreversible bone mineral dissolution and organic degradation during osteoclastic resorption. However, current clinically available approaches are mainly developed from the perspective of osteoclast biology rather than the critical acidified niche. Here, we developed a smart "nanosacrificial layer" consisting of sodium bicarbonate (NaHCO3)-containing and tetracycline-functionalized nanoliposomes (NaHCO3-TNLs) that can target bone surfaces and respond to external secreted acidification from osteoclasts, preventing osteoporosis. In vitro and in vivo results prove that this nanosacrificial layer precisely inhibits the initial acidification of osteoclasts and initiates a chemically regulated biocascade to remodel the bone microenvironment and realize bone protection: extracellular acid-base neutralization first inhibits osteoclast function and also promotes its apoptosis, in which the apoptosis-derived extracellular vesicles containing RANK (receptor activator of nuclear factor-κ B) further consume RANKL (RANK ligand) in serum, achieving comprehensive osteoclast inhibition. Our therapeutic strategy for osteoporosis is based on original and precise acid-base neutralization, aiming to reestablish bone homeostasis by using a smart nanosacrificial layer that is able to induce chemically regulated biocascade effects. This study also provides a novel understanding of osteoporosis therapy in biomedicine and clinical treatments.


Assuntos
Osso e Ossos/metabolismo , Nanoestruturas/química , Osteoclastos/metabolismo , Osteoporose/prevenção & controle , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Animais , Reabsorção Óssea/metabolismo , Dióxido de Carbono/química , Colesterol/química , Feminino , Humanos , Lecitinas/química , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosfatidiletanolaminas/metabolismo , Polietilenoglicóis/metabolismo , Ligante RANK/metabolismo , Bicarbonato de Sódio/química , Propriedades de Superfície , Tetraciclina/química
8.
Small ; 16(41): e2002435, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32954651

RESUMO

Infection with live-attenuated vaccines always inevitably induces side effects that reduce their safety. This study suggests a concept of magnetic virus produced by genetically modifying viral surfaces with Fe3 O4 nanoparticles (NPs) to control their tropisms. An iron-affinity peptide is designed to be displayed on the viral surface protein (VP1) of human enterovirus type 71 (EV71), a typical nonenveloped picornavirus, as the model. The modified EV71 can self-bind with Fe3 O4 NPs under physiological conditions, resulting in novel EV71-Fe3 O4 hybrid materials. This rationally engineered EV71 with Fe3 O4 retains its original biological infectivity, but its tropism can be precisely controlled by magnetism. Both in vitro and in vivo experiments demonstrate that EV71-Fe3 O4 can infect only a desired area within the limit of the applied magnetic field, which effectively reduces its pathological damage. More importantly, this characteristic of EV71 can be inherited due to the gene-induced coassembly of viruses and NPs. This achievement provides a proof of concept in virus vaccine improvement by a combination of gene modification and material incorporation, leading to great potential for biomedical developments.


Assuntos
Enterovirus , Nanopartículas , Humanos , Fenômenos Magnéticos
9.
Angew Chem Int Ed Engl ; 59(5): 2071-2075, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31777138

RESUMO

Ionic oligomers and their crosslinking implies a possibility to produce novel organic-inorganic composites by copolymerization. Using organic acrylamide monomers and inorganic calcium phosphate oligomers as precursors, uniformly structured polyacrylamide (PAM)-calcium phosphate copolymer is prepared by an organic-inorganic copolymerization. In contrast to the previous PAM-based composites by mixing inorganic components into polymers, the copolymerized material has no interphase boundary owing to the homogenous incorporation of the organic and inorganic units at molecular level, resulting in a complete and continuous hybrid network. The participation of the ionic binding effect in the crosslinking process can substantially improve the mechanical strength; the copolymer can reach a modulus and hardness of 35.14±1.91 GPa and 1.34±0.09 GPa, respectively, which are far superior to any other PAM-based composites.

10.
J Biol Inorg Chem ; 24(4): 467-481, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31175447

RESUMO

Chemical biology generally highlights the modulation or control of life processes using chemical molecules. However, the rapid development of materials' science has resulted in the increasing application of various functional materials in biological regulation. More importantly, the state of art of creating the integration of materials, either the inorganic or organic matrices, with living organisms has opened a window of opportunity to add the multiplex function to organisms. In this review, we suggest a new concept of materials' biology that refers to promoting functional evolution of living organisms using material-based modification of structures, functions, and behaviors of biological organisms, which could change the modification of organisms from the current molecular-level regulation to materials' level. Thus, this review focuses on the recent achievements of material-based modification of organisms that evolves the biological function of cells, bacteria, and viruses using biomimetic strategies. The bioinspired strategies for material-based modification, including layer-by-layer, biomimetic mineralization, interfacial reactive deposition, etc., are briefly introduced. Furthermore, the interaction between materials and organisms has performed a broad function that is not retained by organisms at their native state, which results in the applications in structural support, protection, environment control, energy, vaccine improvement, and cancer treatment. The significance of material-based regulations of organism is to use rationally designed materials to endow new physiological functions to organisms, which provides another perspective to understand biological inorganic chemistry. The roles of materials in chemical regulations of biology are highlighted. New characteristics as well as functions can be achieved by integration the rationally designed materials onto/into living organisms, following material-assisted biological improvement/evolution.


Assuntos
Química Bioinorgânica/métodos , Animais , Células/metabolismo , Engenharia Genética , Humanos , Minerais/química , Minerais/metabolismo , Vírus/imunologia , Vírus/metabolismo
11.
Nano Lett ; 18(10): 6551-6556, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30188138

RESUMO

During nanoparticle coalescence in aqueous solution, dehydration and initial contact of particles are critically important but poorly understood processes. In this work, we used in situ liquid-cell transmission electron microscopy to directly visualize the coalescence process of Au nanocrystals. It is found that the Au atomic nanobridge forms between adjacent nanocrystals that are separated by a ∼0.5 nm hydration layer. The nanobridge structure first induces initial contact of Au nanocrystals over their hydration layers and then surface diffusion and grain boundary migration to rearrange into a single nanocrystal. Classical density functional theory calculations and ab initio molecular dynamics simulations suggest that the formation of the nanobridge can be attributed to the accumulation of auric ions and a higher local supersaturation in the gap, which can promote dehydration, contact, and fusion of Au nanocrystals. The discovery of this multistep process advances our understanding of the nanoparticle coalescence mechanism in aqueous solutions.

12.
Anal Chem ; 90(11): 6556-6562, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29715009

RESUMO

Exosomes are nanosized vesicles secreted by cells, with a lipid bilayer membrane and protein and nucleic acid contents. Here, we present the first method for the selective and quantitative analysis of exosomes by digital detection integrated with nucleic acid-based amplification in a microchip. An external biocompatible anchor molecule conjugated with DNA oligonucleotides was anchored in the lipid bilayer membrane of exosomes via surface self-assembly for total exosome analysis. Then, specific antibody-DNA conjugates were applied to label selective exosomes among the total exosomes. The DNA-anchored exosomes were distributed into microchip chambers with one or fewer exosomes per chamber. The signal from the DNA on the exosomes was amplified by a rapid isothermal nucleic acid detection assay. A chamber with an exosome exhibited a positive signal and was recorded as 1, while a chamber without an exosome presented a negative signal and was recorded as 0. The 10100101 digital signals give the number of positive chambers. According to the Poisson distribution, the exosome stock concentration was calculated by the observed fraction of positive chambers. The findings showed that nanoscale particles can be digitally detected via DNA-mediated signal amplification in a microchip with simple microscopic settings. This approach can be integrated with multiple types of established nucleic acid assays and provides a versatile platform for the quantitative detection of various nanosomes, from extracellular vesicles such as exosomes and enveloped viruses to inorganic and organic nanoparticles, and it is expected to have broad applications in basic research areas as well as disease diagnosis and therapy.


Assuntos
DNA/genética , Exossomos/genética , Nanopartículas/química , Técnicas de Amplificação de Ácido Nucleico , Células HeLa , Humanos , Propriedades de Superfície , Células Tumorais Cultivadas
13.
Chembiochem ; 19(7): 669-673, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377527

RESUMO

Photobiological hydrogen production plays a vital role in generating clean renewable energy owing to its low energy consumption and environmental friendliness. Although materials-induced Chlorella aggregates have been developed to achieve sustained photobiological hydrogen production under normal aerobic conditions, the yield is relatively low and equals only 0.42 % of the light-to-H2 energy-conversion efficiency. Herein, we report that only 0.5 vol % dimethyl sulfoxide in an aqueous environment significantly enhances the H2 yield produced by aggregated Chlorella, reaching 0.69 % of the light-to-H2 energy-conversion efficiency. This improvement can be attributed to an increase in the cellular respiration rate by dimethyl sulfoxide, which results in a decrease in the oxygen content inside the aggregates and, ultimately, to the activation of more hydrogenases. More generally, this strategy consists of a functional enhancement in organism-material hybrids by using small molecules.


Assuntos
Células Imobilizadas/metabolismo , Chlorella/metabolismo , Dimetil Sulfóxido/farmacologia , Hidrogênio/metabolismo , Respiração Celular/efeitos dos fármacos , Hidrogenase/metabolismo , Nanopartículas/química , Oxigênio/metabolismo , Fotobiologia , Fotossíntese/efeitos dos fármacos , Dióxido de Silício/química
14.
Chemistry ; 24(45): 11518-11529, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29377301

RESUMO

In nature, viruses can realize self-mineralization under metal-ion-abundant conditions. Interestingly, the mineralized state is a transition state of the virus when the host is not available. Mammalian viruses that share the similar chemical properties also stand a chance of transformation into a mineralized state. In this review, we focus on the possibility of mammalian viruses to undergo mineralization under a physiological environment and the development of biomineralized-based virus engineering. We will introduce the effect of biomineralization on the physiochemical or biological properties of viruses and we will discuss the relationship between mineral composition and biological potentials. The new biological prospects of mineralized-state viruses, including bypassing biological barriers, protection, and virus-host recognition, will provide new insight for the biosecurity and prevention of viral infection. With respect to vaccines, the mineralized state can modulate the immune recognition, change the immunization route, and elevate the vaccine efficacy. Together, these findings of the mineralized state of the virus may lead to a new understanding of virus biology, application, and prevention.


Assuntos
Minerais/química , Vacinas Virais/química , Vírus , Animais , Humanos , Vacinas , Vacinas Virais/imunologia
15.
J Am Chem Soc ; 139(25): 8562-8569, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28590728

RESUMO

We herein show the chiral recognition and separation of aspartic acid (Asp) enantiomers by achiral brushite due to the asymmetries of their dynamical steps in its nonequilibrium states. Growing brushite has a higher adsorption affinity to d-Asp, while l-Asp is predominant on the dissolving brushite surface. Microstructural characterization reveals that chiral selection is mainly attributed to brushite [101] steps, which exhibit two different configurations during crystal growth and dissolution, respectively, with each preferring a distinct enantiomer due to this asymmetry. Because these transition step configurations have different stabilities, they subsequently result in asymmetric adsorption. By varying free energy barriers through solution thermodynamic driving force (i.e., supersaturation), the dominant nonequilibrium intermediate states can be switched and chiral selection regulated. This finding highlights that the dynamic steps can be vital for chiral selection, which may provide a potential pathway for chirality generation through the dynamic nature.


Assuntos
Ácido Aspártico/química , Fosfatos de Cálcio/química , Termodinâmica , Simulação por Computador , Microscopia de Força Atômica , Estereoisomerismo
16.
Langmuir ; 33(9): 2454-2459, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28198628

RESUMO

Photosynthetic microalgae play an important role in solar-to-chemical energy conversion on Earth, but the increasing solar ultraviolet (UV) radiation seriously reduces the biological photosynthesis. Here, we developed a one-step approach to construct cell-in-shell hybrid structure by using direct adsorption of CeO2 nanoparticles onto cells. The engineered CeO2 nanoshell can efficiently protect the enclosed Chlorella cell due to its excellent UV filter property, which can also eliminate UV-induced oxidative stress. The experiments demonstrate that the resulted algae-CeO2 composites can guarantee their biological photosynthetic process and efficiency even under UV. This study follows a feasible strategy to protect living organisms by using functional nanomaterials to improve their biological functions.


Assuntos
Cério/metabolismo , Clorófitas/metabolismo , Raios Ultravioleta , Adsorção , Células Cultivadas , Cério/química , Clorófitas/citologia , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Fotossíntese , Propriedades de Superfície
17.
Environ Sci Technol ; 51(21): 12717-12726, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28949533

RESUMO

Cyanobacterial blooms represent a significant threat to global water resources because blooming cyanobacteria deplete oxygen and release cyanotoxins, which cause the mass death of aquatic organisms. In nature, a large biomass volume of cyanobacteria is a precondition for a bloom, and the cyanobacteria buoyancy is a key parameter for inducing the dense accumulation of cells on the water surface. Therefore, blooms will likely be curtailed if buoyancy is inhibited. Inspired by diatoms with naturally generated silica shells, we found that silica nanoparticles can be spontaneously incorporated onto cyanobacteria in the presence of poly(diallyldimethylammonium chloride), a cationic polyelectrolyte that can simulate biosilicification proteins. The resulting cyanobacteria-SiO2 complexes can remain sedimentary in water. This strategy significantly inhibited the photoautotrophic growth of the cyanobacteria and decreased their biomass accumulation, which could effectively suppress harmful bloom events. Consequently, several of the adverse consequences of cyanobacteria blooms in water bodies, including oxygen consumption and microcystin release, were significantly alleviated. Based on the above results, we propose that the silica nanoparticle treatment has the potential for use as an efficient strategy for preventing cyanobacteria blooms.


Assuntos
Cianobactérias , Eutrofização , Dióxido de Silício , Biomassa , Calcificação Fisiológica , Microcistinas
18.
Angew Chem Int Ed Engl ; 56(42): 12908-12912, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28722241

RESUMO

Although the circulation of avian influenza viruses in humans is limited, they can be transmitted from Aves (birds) to humans, representing a great challenge. Herein, we suggest that influenza viruses from Aves might exist in a mineralized state owing to the high calcium concentrations in the avian intestine. Using two typical influenza viruses as examples, we demonstrate that these viruses can self-mineralize in simulated avian intestinal fluid, resulting in egg-like virus-mineral structured composites. The mineralized viruses are more robust, with enhanced infectivity and thermostability. More importantly, the mineral exterior of mineralized viruses can alter their cell internalization, expanding the possible tropisms. The discovery of a mineralized state of influenza viruses highlights the integration of nanomaterials and viruses in the environment, which provides a new understanding of avian influenza infection and its control.


Assuntos
Vírus da Influenza A Subtipo H9N2/fisiologia , Minerais/química , Células A549 , Animais , Aves/crescimento & desenvolvimento , Cálcio/química , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H9N2/química , Intestinos/virologia , Pulmão/virologia , Camundongos , Microscopia Eletrônica de Transmissão , Óvulo/virologia , RNA Viral/metabolismo , Internalização do Vírus
19.
Langmuir ; 32(35): 8999-9004, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27519793

RESUMO

Aggregation-based crystal growth is distinct from the classical understanding of solution crystallization. In this study, we reveal that N-stearoyl-l-glutamic acid (C18-Glu, an amphiphile that mimics a biomineralization-relevant biomolecule) can switch calcite crystallization from a classical ion-by-ion growth to a non-classical particle-by-particle pathway, which combines the classical and non-classical crystallization in one system. This growth mechanism change is controlled by the concentration ratio of [C18-Glu]/[Ca(2+)] in solution. The high [C18-Glu]/[Ca(2+)] can stabilize precursor nanoparticles to provide building blocks for aggregation-based crystallization, in which the interaction between C18-Glu and the nanoprecursor phase rather than that of C18-Glu on calcite steps is highlighted. Our finding emphasizes the enrollment of organic additives on metastable nano building blocks, which provides an alternative understanding about organic control in inorganic crystallization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA