Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 24(19): 22104-9, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661945

RESUMO

A significant technology challenge in planetary missions is the in situ detection of organics at the sub-part-per-million (ppm) level in soils. This article reports the organic compound detection in Mars-like soils at the sub-ppm level using an ultra-sensitive spectral sensing technique based on fluorescence-free surface-enhanced Raman scattering (SERS), which has a significantly improved sensitivity and reduced fluorescence noise. Raman spectral detection of ppm level organics in Antarctic Dry Valley and Mojave Desert soils have been obtained for the first time, which otherwise are not detected by other Raman spectral techniques.

2.
Opt Express ; 21(26): 32599-604, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24514853

RESUMO

We develop a prototype of optically-steered X-band phased array antenna with capabilities of multi-band and multi-beam operations. It exploits high-speed wavelength tunable lasers for optical true-time delays over a dispersive optical fiber link, enabling agile, broadband and vibration-free RF beam steering with large angle.

3.
IEEE Trans Nanobioscience ; 15(8): 828-834, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27959817

RESUMO

In this paper, we described a new type of bioenabled nano-plasmonic sensors based on diatom photonic crystal biosilica with in-situ growth silver nanoparticles and demonstrated label-free chemical and biological sensing based on surface-enhanced Raman scattering (SERs) from complex samples. Diatoms are photosynthetic marine micro-organisms that create their own skeletal shells of hydrated amorphous silica, called frustules, which possess photonic crystal-like hierarchical micro- & nanoscale periodic pores. Our research shows that such hybrid plasmonic-biosilica nanostructures formed by cost-effective and eco-friendly bottom-up processes can achieve ultra-high limit of detection for medical applications, food sensing, water/air quality monitoring and geological/space research. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatom frustules and the localized surface plasmons of the silver nanoparticles. Additionally, the nanoporous, ultra-hydrophilic diatom biosilica with large surface-to-volume ratio can concentrate more analyte molecules to the surface of the SERS substrates, which can help to detect biomolecules that cannot be easily adsorbed by metallic nanoparticles.


Assuntos
Técnicas Biossensoriais/métodos , Diatomáceas/química , Dióxido de Silício/química , Análise Espectral Raman/métodos , Fótons
4.
Appl Spectrosc ; 66(8): 911-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22800768

RESUMO

Raman spectroscopy has promising potential for future Mars missions as a non-contact detection technique for characterizing organic material and mineralogy. Such a capability will be useful for selecting samples for detailed analysis on a rover and for selecting samples for return to Earth. Stromatolites are important evidence for the earliest life on Earth and are promising targets for Mars investigations. Although constructed by microorganisms, stromatolites are organo-sedimentary structures that can be large enough to be discovered and investigated by a Mars rover. In this paper, we report the Raman spectroscopic investigations of the carbonate mineralogy and organic layering in a Precambrian (~1.5 Gyr old) stromatolite from the Crystal Spring Formation of Southern California. Ultraviolet (UV: 266 nm), visible (514 nm, 633 nm), and near-infrared (NIR: 785 nm, 1064 nm) Raman spectra are presented. We conclude that 1064 nm excitation is the optimal excitation wavelength for avoiding intrinsic fluorescence and detecting organic carbon within the carbonate matrix. Our results confirm that NIR Raman spectroscopy has important applications for future Mars missions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA