RESUMO
With the explosion of digital world, the dramatically increasing data volume is expected to reach 175 ZB (1 ZB = 1012 GB) in 2025. Storing such huge global data would consume tons of resources. Fortunately, it has been found that the deoxyribonucleic acid (DNA) molecule is the most compact and durable information storage medium in the world so far. Its high coding density and long-term preservation properties make itself one of the best data storage carriers for the future. High-throughput DNA synthesis is a key technology for "DNA data storage", which encodes binary data stream (0/1) into quaternary long DNA sequences consisting of four bases (A/G/C/T). In this review, the workflow of DNA data storage and the basic methods of artificial DNA synthesis technology are outlined first. Then, the technical characteristics of different synthesis methods and the state-of-the-art of representative commercial companies, with a primary focus on silicon chip microarray-based synthesis and novel enzymatic DNA synthesis are presented. Finally, the recent status of DNA storage and new opportunities for future development in the field of high-throughput, large-scale DNA synthesis technology are summarized.
Assuntos
DNA , DNA/química , Armazenamento e Recuperação da Informação , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Abnormal activation of the oncogene YAP in the Hippo pathway is a major feature in liver cancer and inactivation of MST1/2 has been shown to be responsible for the overactivation of YAP that led to tumorigenesis. However, mechanisms underlying MST1/2 dysregulation remain poorly understood. RNA-seq analysis and genome (KEGG) pathway enrichment analysis were used to identify genes and pathways that were regulated by SIRT7. qRT-PCR, ChIP, and luciferase assay were used to investigate transcriptional regulation. Mass spectrometry, co-immunoprecipitation and immunoprecipitation were used to exam protein-protein interaction and post-transcriptional modification. A xenograft mouse model was used to confirm the effect of SIRT7 and SIRT7 inhibitors on hepatocellular carcinoma (HCC) proliferation in vivo. We found that SIRT7 suppresses MST1 by both transcriptional regulation and post-transcriptional modification, which in turn promotes YAP nuclear localization and transcriptional activation in liver cancer. Mechanistically, we revealed that SIRT7 suppresses MST1 transcription by binding to the MST1 promoter and inducing H3K18 deacetylation in its promoter region. In addition, SIRT7 directly binds to and deacetylates MST1, which primes acetylation-dependent MST1 ubiquitination and protein degradation. In clinical samples, we confirmed a negative correlation between SIRT7 and MST1 protein levels, and high SIRT7 expression correlated with elevated YAP expression and nuclear localization. In addition, SIRT7 specific inhibitor 2800Z sufficiently inhibited HCC growth by disrupting the SIRT7/MST1/YAP axis. Our data thus revealed the previously undescribed function of SIRT7 in regulating the Hippo pathway in HCC and further proved that targeting SIRT7 might provide novel therapeutic options for the treatment of liver cancer.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuínas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Sirtuínas/genética , Sirtuínas/metabolismoRESUMO
There is a known genetic susceptibility to anthracycline-induced cardiac dysfunction in childhood cancer survivors, but this has not been adequately shown in adolescent and young adult (AYA) patients. Our aim was to determine if the previously identified variants associated with cardiac dysfunction in childhood cancer patients affect AYA cancer patients similarly. Forty-five variants were selected for analysis in 253 AYAs previously treated with anthracyclines. We identified four variants that were associated with cardiac dysfunction: SLC10A2:rs7319981 (p = 0.017), SLC22A17:rs4982753 (p = 0.019), HAS3:rs2232228 (p = 0.023), and RARG:rs2229774 (p = 0.050). HAS3:rs2232228 and SLC10A2:rs7319981 displayed significant effects in our AYA cancer survivor population that were in the opposite direction than that reported in childhood cancer survivors. Genetic variants in the host genes were further analyzed for additional associations with cardiotoxicity in AYA cancer survivors. The host genes were then evaluated in a panel of induced pluripotent stem cell-derived cardiomyocytes to assess changes in levels of expression when treated with doxorubicin. Significant upregulation of HAS3 and SLC22A17 expression was observed (p < 0.05), with non-significant anthracycline-responsivity observed for RARG. Our study demonstrates that there is a genetic influence on cardiac dysfunction in AYA cancer patients, but there may be a difference in the role of genetics between childhood and AYA cancer survivors.
Assuntos
Antraciclinas , Sobreviventes de Câncer , Cardiotoxicidade , Predisposição Genética para Doença , Humanos , Adolescente , Antraciclinas/efeitos adversos , Adulto Jovem , Masculino , Feminino , Cardiotoxicidade/genética , Adulto , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Cardiopatias/induzido quimicamente , Cardiopatias/genética , Antibióticos Antineoplásicos/efeitos adversos , Fatores de RiscoRESUMO
The performance of lithium-sulfur batteries is compromised by the loss of sulfur as dissolved polysulfides in the electrolyte and consequently the polysulfide redox shutting effect. Accelerating the conversion kinetics of polysulfide intermediates into sulfur or lithium sulfide through electrocatalysis has emerged as a root-cause solution. Co-N-C composite electrocatalyst is commonly used for this purpose. It is illustrated here that how the effectiveness can be improved by modulating the coordination chemistry of Co-N-C catalytic sites through introducing Ru species (RuCo-NC). The well-dispersed Ru in the Co-NC carbon matrix altered the total charge distribution over the Co-N-C catalytic sites and led to the formation of electron-rich Co-N, which is highly active for the polysulfide conversion reactions. Using Ru to modulate the electronic structure in the Co-N-C configuration and the additional catalytic sites over the Ru-Nx species can manifest optimal adsorption behavior of polysulfides. Consequently, the sulfur cathode with RuCo-NC can reduce the capacity fade rate from 0.11 % per cycle without catalyst (initial capacity of 701â mAh g-1) to 0.054 % per cycle (initial capacity of 1074â mAh g-1) over 400 cycles at 0.2â C rate. The results of this study provide the evidence for a feasible catalyst modification strategy for the polysulfide electrocatalysis.
RESUMO
BACKGROUND: Lung cancer still ranks first in the mortality rate of cancer. Uric acid is a product of purine metabolism in humans. Its presence in the serum is controversial; some say that its high levels have a protective effect against tumors, others say the opposite, that is, high levels increase the risk of cancer. Therefore, the aim of this study was to investigate the potential causal association between serum uric acid levels and lung cancer. METHODS: Mendelian randomization was used to achieve our aim. Sensitivity analyses was performed to validate the reliability of the results, followed by reverse Mendelian analyses to determine a potential reverse causal association. RESULTS: A significant causal association was found between serum uric acid levels and lung cancer in East Asian and European populations. Further sublayer analysis revealed a significant causal association between uric acid and small cell lung cancer, while no potential association was observed between uric acid and non-small cell lung cancer, squamous lung cancer, and lung adenocarcinoma. The sensitivity analyses confirmed the reliability of the results. Reverse Mendelian analysis showed no reverse causal association between uric acid and lung cancer. CONCLUSIONS: The results of this study suggested that serum uric acid levels were negatively associated with lung cancer, with uric acid being a potential protective factor for lung cancer. In addition, uric acid level monitoring was simple and inexpensive. Therefore, it might be used as a biomarker for lung cancer, promoting its wide use clinical practice.
Assuntos
Povo Asiático , Neoplasias Pulmonares , Análise da Randomização Mendeliana , Ácido Úrico , População Branca , Humanos , Ácido Úrico/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/epidemiologia , População Branca/genética , Povo Asiático/genética , Polimorfismo de Nucleotídeo Único , Ásia Oriental/epidemiologia , Europa (Continente)/epidemiologia , Predisposição Genética para Doença , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Fatores de Risco , População do Leste AsiáticoRESUMO
The morbidity and mortality of lung cancer are still the highest among all malignant tumors. Radiotherapy plays an important role in clinical treatment of lung cancer. However, the effect of radiotherapy is not ideal due to the radiation resistance of tumor tissues. Abnormalities in tumor vascular structure and function affect blood perfusion, and oxygen transport is impeded, making tumor microenvironment hypoxic. Tumor hypoxia is the major cause of radiotherapy resistance. By promoting tumor vessel normalization and enhancing vascular transport function, tumor hypoxia can be relieved to reduce radiotherapy resistance and increase tumor radiotherapy sensitivity. In our previous study, a pericytes-targeted tumor necrosis factor alpha (named Z-TNFα) was first constructed and produced by genetically fusing the platelet-derived growth factor receptor ß (PDGFRß)-antagonistic affibody (ZPDGFRß) to the TNFα, and the Z-TNFα induced normalization of tumor vessels and improved the delivery of doxorubicin, enhancing tumor chemotherapy. In this study, the tumor vessel normalization effect of Z-TNFα in lung cancer was further clarified. Moreover, the tumor hypoxia improvement and radiosensitizing effect of Z-TNFα were emphatically explored in vivo. Inspiringly, Z-TNFα specifically accumulated in Lewis lung carcinoma (LLC) tumor graft and relieved tumor hypoxia as well as inhibited HIF-1α expression. As expected, Z-TNFα significantly increased the effect of radiotherapy in mice bearing LLC tumor graft. In conclusion, these results demonstrated that Z-TNFα is also a promising radiosensitizer for lung cancer radiotherapy.
Assuntos
Neoplasias Pulmonares , Radiossensibilizantes , Animais , Camundongos , Neoplasias Pulmonares/radioterapia , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Doxorrubicina , Microambiente TumoralRESUMO
BACKGROUND: The overall landscape of health-related quality of life (HRQoL) has not been thoroughly investigated in adolescents and young adults (AYAs) with cancer. Data are also lacking on how well HRQoL at the time of cancer diagnosis can prognosticate long-term survival in AYA survivors. PATIENTS AND METHODS: We included 3,497 survivors of AYA cancer (age 15-39 years at diagnosis) who completed the Short-Form 12 Health Survey (SF-12) HRQoL questionnaire at diagnosis. Physical component summary (PCS) and mental component summary (MCS) scores were generated, with scores <50 representing poor HRQoL. Differences in HRQoL by patient characteristics and tumor type were investigated using violin plots and t tests/analysis of variance. The effect of HRQoL on overall survival was assessed using Kaplan-Meier plots and Cox proportional hazards models. RESULTS: Overall mean PCS and MCS scores in this racially/ethnically diverse cohort (64% White, 19% Hispanic, 10% Black, and 7% other race/ethnicity) were 43.6 and 46.7, respectively. Women with breast cancer reported the most favorable PCS (50.8), and those with cervical cancer reported the lowest MCS (42.8). Age at diagnosis was associated positively with PCS (P<.001) and inversely with MCS (P<.001). Females had higher PCS yet lower MCS than males (both P<.001). Marginalized racial and ethnic populations reported lower PCS than White patients (P<.001). Physical and mental HRQoL were prognostic and associated with increased risk of poor survival (hazard ratio, 1.95; 95% CI, 1.72-2.21 for physical HRQoL, and 1.26; 95% CI, 1.13-1.40 for mental HRQoL). CONCLUSIONS: Physical and mental HRQoL at diagnosis vary across patient characteristics in AYA cancer survivors. Poor HRQoL at diagnosis may be a prognosticator of diminished overall survival among AYA cancer survivors.
Assuntos
Neoplasias , Qualidade de Vida , Humanos , Adolescente , Feminino , Masculino , Adulto Jovem , Neoplasias/psicologia , Neoplasias/diagnóstico , Neoplasias/mortalidade , Adulto , Sobreviventes de Câncer/psicologia , Sobreviventes de Câncer/estatística & dados numéricos , Medidas de Resultados Relatados pelo Paciente , Inquéritos e Questionários , PrognósticoRESUMO
It is very crucial to investigate key molecules that are involved in myelination to gain an understanding of brain development and injury. We have reported for the first time that pathogenic variants p.R477H and p.P505S in KARS, which encodes lysyl-tRNA synthetase (LysRS), cause leukoencephalopathy with progressive cognitive impairment in humans. The role and action mechanisms of KARS in brain myelination during development are unknown. Here, we first generated Kars knock-in mouse models through the CRISPR-Cas9 system. Kars knock-in mice displayed significant cognitive deficits. These mice also showed significantly reduced myelin density and content, as well as significantly decreased myelin thickness during development. In addition, Kars mutations significantly induced oligodendrocyte differentiation arrest and reduction in the brain white matter of mice. Mechanically, oligodendrocytes' significantly imbalanced expression of differentiation regulators and increased capase-3-mediated apoptosis were observed in the brain white matter of Kars knock-in mice. Furthermore, Kars mutations significantly reduced the aminoacylation and steady-state level of mitochondrial tRNALys and decreased the protein expression of subunits of oxidative phosphorylation complexes in the brain white matter. Kars knock-in mice showed decreased activity of complex IV and significantly reduced ATP production and increased reactive oxygen species in the brain white matter. Significantly increased percentages of abnormal mitochondria and mitochondrion area were observed in the oligodendrocytes of Kars knock-in mouse brain. Finally, melatonin (a mitochondrion protectant) significantly attenuated mitochondrion and oligodendrocyte deficiency in the brain white matter of KarsR504H/P532S mice. The mice treated with melatonin also showed significantly restored myelination and cognitive function. Our study first establishes Kars knock-in mammal models of leukoencephalopathy and cognitive impairment and indicates important roles of KARS in the regulation of mitochondria, oligodendrocyte differentiation and survival, and myelination during brain development and application prospects of melatonin in KARS (or even aaRS)-related diseases.
Assuntos
Lisina-tRNA Ligase , Melatonina , Bainha de Mielina , Oligodendroglia , Animais , Camundongos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Técnicas de Introdução de Genes , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Leucoencefalopatias/patologia , Melatonina/metabolismo , Mutação , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Lisina-tRNA Ligase/genéticaRESUMO
Clinical implementation of evidence-based practice (EBP) tools is a healthcare priority. The Dynamic Grade of Swallowing Toxicity (DIGEST) is an EBP tool developed in 2016 for videofluoroscopy in head and neck (H&N) oncology with clinical implementation as a goal. We sought to examine: (1) feasibility of clinical implementation of DIGEST in a national comprehensive cancer center, and (2) fidelity of DIGEST adoption in real-world practice. A retrospective implementation evaluation was conducted in accordance with the STARI framework. Electronic health record (EHR) databases were queried for all consecutive modified barium swallow (MBS) studies conducted at MD Anderson Cancer Center from 2016 to 2021. Implementation outcomes included: feasibility as measured by DIGEST reporting in EHR (as a marker of clinical use) and fidelity as measured by accuracy of DIGEST reporting relative to the decision-tree logic (penetration-aspiration scale [PAS], residue, and Safety [S] and Efficiency [E] grades). Contextual factors examined included year, setting, cancer type, MBS indication, and provider. 13,055 MBS were conducted by 29 providers in 7,842 unique patients across the lifespan in diverse oncology populations (69% M; age 1-96 years; 58% H&N cancer; 10% inpatient, 90% outpatient). DIGEST was reported in 12,137/13,088 exams over the 6-year implementation period representing 93% (95% CI: 93-94%) adoption in all exams and 99% (95% CI: 98-99%) of exams excluding the total laryngectomy population (n = 730). DIGEST reporting varied modestly by year, cancer type, and setting/provider (> 91% in all subgroups, p < 0.001). Accuracy of DIGEST reporting was high for overall DIGEST (incorrect SE profile 1.6%, 200/12,137), DIGEST-safety (incorrect PAS 0.4% 51/12,137) and DIGEST-efficiency (incorrect residue 1.2%, 148/12,137). Clinical implementation of DIGEST was feasible with high fidelity in a busy oncology practice across a large number of providers. Adoption of the tool across the lifespan in diverse cancer diagnoses may motivate validation beyond H&N oncology.
RESUMO
BACKGROUND: Microglial activation-mediated neuroinflammation is one of the essential pathogenic mechanisms of sepsis-associated encephalopathy (SAE). Mounting evidence suggests that high mobility group box-1 protein (HMGB1) plays a pivotal role in neuroinflammation and SAE, yet the mechanism by which HMGB1 induces cognitive impairment in SAE remains unclear. Therefore, this study aimed to investigate the mechanism of HMGB1 underlying cognitive impairment in SAE. METHODS: An SAE model was established by cecal ligation and puncture (CLP); animals in the sham group underwent cecum exposure alone without ligation and perforation. Mice in the inflachromene (ICM) group were continuously injected with ICM intraperitoneally at a daily dose of 10 mg/kg for 9 days starting 1 h before the CLP operation. The open field, novel object recognition, and Y maze tests were performed on days 14-18 after surgery to assess locomotor activity and cognitive function. HMGB1 secretion, the state of microglia, and neuronal activity were measured by immunofluorescence. Golgi staining was performed to detect changes in neuronal morphology and dendritic spine density. In vitro electrophysiology was performed to detect changes in long-term potentiation (LTP) in the CA1 of the hippocampus. In vivo electrophysiology was performed to detect the changes in neural oscillation of the hippocampus. RESULTS: CLP-induced cognitive impairment was accompanied by increased HMGB1 secretion and microglial activation. The phagocytic capacity of microglia was enhanced, resulting in aberrant pruning of excitatory synapses in the hippocampus. The loss of excitatory synapses reduced neuronal activity, impaired LTP, and decreased theta oscillation in the hippocampus. Inhibiting HMGB1 secretion by ICM treatment reversed these changes. CONCLUSIONS: HMGB1 induces microglial activation, aberrant synaptic pruning, and neuron dysfunction in an animal model of SAE, leading to cognitive impairment. These results suggest that HMGB1 might be a target for SAE treatment.
Assuntos
Disfunção Cognitiva , Proteína HMGB1 , Encefalopatia Associada a Sepse , Sepse , Animais , Camundongos , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Proteína HMGB1/metabolismo , Doenças Neuroinflamatórias , Sepse/complicações , Encefalopatia Associada a Sepse/metabolismoRESUMO
The regulation of dendritic spine morphology is a critical aspect of neuronal network refinement during development and modulation of neurotransmission. Previous studies revealed that glutamatergic transmission plays a central role in synapse development. AMPA receptors and NMDA receptors regulate spine morphology in an activity dependent manner. However, whether and how Kainate receptors (KARs) regulate synapse development remains poorly understood. In this study, we found that GluK1 and GluK2 may play distinct roles in synapse development. In primary cultured hippocampal neurons, we found overexpression of the calcium-permeable GluK2(Q) receptor variant increased spine length and spine head area compared to overexpression of the calcium-impermeable GluK2(R) variant or EGFP transfected, control neurons, indicating that Q/R editing may play a role in GluK2 regulation of synapse development. Intriguingly, neurons transfected with GluK1(Q) showed decreased spine length and spine head area, while the density of dendritic spines was increased, suggesting that GluK1(Q) and GluK2(Q) have different effects on synaptic development. Swapping the critical domains between GluK2 and GluK1 demonstrated the N-terminal domain (NTD) is responsible for the different effects of GluK1 and GluK2. In conclusion, Kainate receptors GluK1 and GluK2 have distinct roles in regulating spine morphology and development, a process likely relying on the NTD.
Assuntos
Cálcio , Receptores de Ácido Caínico , Receptores de Ácido Caínico/genética , Receptores de AMPA , Sinapses , Receptores de N-Metil-D-AspartatoRESUMO
The development and understanding of proton conductors based on phosphoric acid are critical for the field of chemistry, biology, and energy. Covalent organic frameworks (COFs), featuring highly crystalline structures and controllable pore sizes, are suitable for constructing phosphoric acid-based proton conductors. However, because of tedious and intricate synthesis, how to develop COFs based on phosphoric acid remains a substantial challenge. Herein, a side-chain decorated strategy is contributed to construct a phosphoric acid-functionalized, imine-linked COF by de novo synthesis. The phosphoric acid side chains with vigorous motion integrating with 1D nanochannels endow the resulting COF with intrinsic proton conductivity. This work expectantly provides a competitive alternative for producing phosphoric acid-functionalized COFs with high intrinsic proton conductivity.
Assuntos
Estruturas Metalorgânicas , Prótons , Ácidos Fosfóricos , Condutividade ElétricaRESUMO
A method of optical fiber composite overhead ground wire (OPGW) positioning based on a Brillouin distributed optical fiber sensor and machine learning is proposed. A distributed Brillouin optical time-domain reflectometry (BOTDR) and Brillouin optical time-domain analyzer (BOTDA) are designed, where the ranges of BOTDR and the BOTDA are 110 km and 125 km, respectively. An unsupervised machine learning method density-based spatial clustering of applications with noise (DBSCAN) is proposed to automatically identify the splicing point based on the Brillouin frequency shift (BFS) difference of adjacent sections. An adaptive parameter selection method based on k-distance is adapted to overcome the parameter sensitivity. The validity of the proposed DBSCAN algorithm is greater than 96%, which is evaluated by three commonly external validation indices with five typical BFS curves. According to the clustering results of different fiber cores and the tower schedule of the OPGW, the connecting towers are distinguished, which is proved as a 100% recognition rate. According to the identification results of different fiber cores of both the OPGW cables and tower schedule, the connecting towers can be distinguished, and the distributed strain information is extracted directly from the BFS to strain. The abnormal region is positioned and warned according to the distributed strain measurements. The method proposed herein significantly improves the efficiency of fault positioning and early warning, which means a higher operational reliability of the OPGW cables.
RESUMO
Cervical diseases such as lymph node disease and tubal obstruction have threatened women's health. However, the traditional diagnostic methods still have shortcomings. NIR-II fluorescence imaging with advantages of low scattering, negligible autofluorescence, and high spatial resolution could be an ideal option. To obtain high quality NIR-II fluorescence imaging, selecting appropriate nanoprobes becomes the important issue. As a small molecular photothermal agent, extensive applications of ICG are rather limited because of its drawbacks. Herein, natural silk fibroin (SF) was synthesized and encapsulated ICG molecules to form SF@ICG nanoparticles (NPs). After detailed analysis, SF@ICG NPs showed excellent stability and long circulation time, as well as strong NIR-II fluorescence emission, well photo-stability, biocompatibility and well photothermal property under 808 nm laser irradiation. Furthermore, SF@ICG NPs were utilized for NIR-II fluorescence imaging of lymph node/lymphangiography and angiography of fallopian tubes. The process of fallopian tubes could be detected with high resolution and high sensitivity.
Assuntos
Fibroínas , Verde de Indocianina , Feminino , Humanos , Imagem ÓpticaRESUMO
The role of oxidative stress in the pathogenesis of various diseases has been attracting attention. We speculated as to whether the redox state of treatment solutions used for various diseases may play a role in treatment success. In the current study, we focused on the human embryo culture medium used for in vitro fertilization (IVF). A total of 173 oocytes from a total of 91 patients treated with IVF were enrolled. The redox state was assessed by measuring the levels of human non-mercaptalbumin (HNA). We analyzed factors related to blastocyst formation on day 5 or 6 after insemination. We also developed a random forest (RF) model for the prediction of blastocyst formation. The variable importance in the predictive model was assessed using the mean decrease in the Gini impurity. Blastocyst formation was observed in 41.04% (71/173) of the oocytes and was associated with a lower %HNA in the culture medium, a younger patient age, and the fertilization method (standard IVF or intracytoplasmic sperm injection). The RF model developed using these factors and 70% of the samples (training set, nâ =â 121) was validated in the remaining testing set (nâ =â 52) and produced an area under the curve of 0.761, where the %HNA in the culture medium was the most important variable for predicting blastocyst formation. In conclusion, lower levels of oxidative stress in embryo culture media were associated with the success of IVF treatment. The redox state of treatment solutions should be considered to support treatment success.
RESUMO
Post-transcriptional modifications of pre-mRNAs expand the diversity of proteomes in higher eukaryotes. In the brain, these modifications diversify the functional output of many critical neuronal signal molecules. In this study, we identified a brain-specific A-to-I RNA editing that changed glutamine to arginine (Q/R) at exon 20 and an alternative splicing of exon 4 in Tmem63b, which encodes a ubiquitously expressed osmosensitive cation channel. The channel isoforms lacking exon 4 occurred in â¼80% of Tmem63b mRNAs in the brain but were not detected in other tissues, suggesting a brain-specific splicing. We found that the Q/R editing was catalyzed by Adar2 (Adarb1) and required an editing site complementary sequence located in the proximal 5' end of intron 20. Moreover, the Q/R editing was almost exclusively identified in the splicing isoform lacking exon 4, indicating a coupling between the editing and the splicing. Elimination of the Q/R editing in brain-specific Adar2 knockout mice did not affect the splicing efficiency of exon 4. Furthermore, transfection with the splicing isoform containing exon 4 suppressed the Q/R editing in primary cultured cerebellar granule neurons. Thus, our study revealed a coupling between an RNA editing and a distant alternative splicing in the Tmem63b pre-mRNA, in which the splicing plays a dominant role. Finally, physiological analysis showed that the splicing and the editing coordinately regulate Ca2+ permeability and osmosensitivity of channel proteins, which may contribute to their functions in the brain.
Assuntos
Adenosina Desaminase/fisiologia , Processamento Alternativo , Encéfalo/metabolismo , Canais de Cálcio/genética , Éxons , Edição de RNA , Precursores de RNA/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Canais de Cálcio/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Microglia activation and subsequent pro-inflammatory responses play a key role in the development of neuropathic pain. The process of microglia polarization towards pro-inflammatory phenotype often occurs during neuroinflammation. Recent studies have demonstrated an active role for the gut microbiota in promoting microglial full maturation and inflammatory capabilities via the production of Short-Chain Fatty Acids (SCFAs). However, it remains unclear whether SCFAs is involved in pro-inflammatory/anti-inflammatory phenotypes microglia polarization in the neuropathic pain. In the present study, chronic constriction injury (CCI) was used to induce neuropathic pain in mice, the mechanical withdrawal threshold, thermal hyperalgesia were accomplished. The levels of microglia markers including ionized calcium-binding adaptor molecule 1 (Iba1), cluster of differentiation 11b (CD11b), pro-inflammatory phenotype markers including CD68, interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and anti-inflammatory phenotype markers including CD206, IL-4 in the hippocampus and spinal cord were determined on day 21 after CCI. The results showed that CCI produced mechanical allodynia and thermal hyperalgesia, and also increased the expressions of microglia markers (Iba1, CD11b) and pro-inflammatory phenotype markers (CD68, IL-1ß, and TNF-α), but not anti-inflammatory phenotype marker (CD206, IL-4) in the hippocampus and spinal cord, accompanied by increased SCFAs in the gut. Notably, antibiotic administration reversed these abnormalities, and its effects was also bloked by SCFAs administration. In conclusion, data from our study suggest that CCI can lead to mechanical and thermal hyperalgesia, while SCFAs play a key role in the pathogenesis of neuropathic pain by regulating microglial activation and subsequent pro-inflammatory phenotype polarization. Antibiotic administration may be a new treatment for neuropathic pain by reducing the production of SCFAs and further inhibiting the process of microglia polarization.
Assuntos
Polaridade Celular , Ácidos Graxos Voláteis/efeitos adversos , Microglia/patologia , Neuralgia/patologia , Animais , Antibacterianos/farmacologia , Biomarcadores/metabolismo , Polaridade Celular/efeitos dos fármacos , Doença Crônica , Constrição Patológica , Citocinas/metabolismo , Ácidos Graxos Voláteis/administração & dosagem , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/patologia , Hiperalgesia/complicações , Hiperalgesia/patologia , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/patologiaRESUMO
Alleviating microglia-mediated neuroinflammation bears great promise to reduce neurodegeneration. Nicotinamide phosphoribosyltransferase (NAMPT) may exert cytokine-like effect in the brain. However, it remains unclear about role of NAMPT in microglial inflammation. Also, it remains unknown about effect of NAMPT inhibition on microglial inflammation. In the present study, we observed that FK866 (a specific noncompetitive NAMPT inhibitor) dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory mediator (interleukin (IL)-6, IL-1ß, inducible nitric oxide synthase, nitric oxide and reactive species) level increase in BV2 microglia cultures. FK866 also significantly inhibited LPS-induced polarization change in microglia. Furthermore, LPS significantly increased NAMPT expression and nuclear factor kappa B (NF-κB) phosphorylation in microglia. FK866 significantly decreased NAMPT expression and NF-κB phosphorylation in LPS-treated microglia. Finally, conditioned medium from microglia cultures co-treated with FK866 and LPS significantly increased SH-SY5Y and PC12 cell viability compared with conditioned medium from microglia cultures treated with LPS alone. Our study strongly indicates that NAMPT may be a promising target for microglia modulation and NAMPT inhibition may attenuate microglial inflammation.
Assuntos
Acrilamidas/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Microglia/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , RatosRESUMO
BACKGROUND: Hypotension after neuraxial anaesthesia is one of the most common complications during caesarean section. Vasopressors are the most effective method to improve hypotension, but which of these drugs is best for caesarean section is not clear. We assessed the effects of vasopressors on the contractile response of uterine arteries and superior mesenteric arteries in pregnant rats to identify a drug that increases the blood pressure of the systemic circulation while minimally affecting the uterine and placental circulation. METHODS: Isolated ring segments from the uterine and superior mesenteric arteries of pregnant rats were mounted in organ baths, and the contractile responses to several vasopressor agents were studied. Concentration-response curves for norepinephrine, phenylephrine, metaraminol and vasopressin were constructed. RESULTS: The contractile response of the mesenteric artery to norepinephrine, as measured by the pEC50 of the drug, was stronger than the uterine artery (5.617 ± 0.11 vs. 4.493 ± 1.35, p = 0.009), and the contractile response of the uterine artery to metaraminol was stronger than the mesenteric artery (pEC50: 5.084 ± 0.17 vs. 4.92 ± 0.10, p = 0.007). There was no statistically significant difference in the pEC50 of phenylephrine or vasopressin between the two blood vessels. CONCLUSIONS: In vitro experiments showed that norepinephrine contracts peripheral blood vessels more strongly and had the least effect on uterine artery contraction. These findings support the use of norepinephrine in mothers between the time of neuraxial anaesthesia and the delivery of the foetus.
Assuntos
Hipotensão/tratamento farmacológico , Artéria Mesentérica Superior/efeitos dos fármacos , Artéria Uterina/efeitos dos fármacos , Vasoconstritores/farmacologia , Anestesia Obstétrica/efeitos adversos , Anestesia Obstétrica/métodos , Animais , Pressão Sanguínea/efeitos dos fármacos , Cesárea/efeitos adversos , Cesárea/métodos , Relação Dose-Resposta a Droga , Feminino , Hipotensão/etiologia , Artéria Mesentérica Superior/metabolismo , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Artéria Uterina/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/administração & dosagemRESUMO
Since the first graphene gas sensor has been reported, functionalized graphene gas sensors have already attracted a lot of research interest due to their potential for high sensitivity, great selectivity, and fast detection of various gases. In this paper, we summarize the recent development and progression of functionalized graphene sensors for ammonia (NH3) detection at room temperature. We review graphene gas sensors functionalized by different materials, including metallic nanoparticles, metal oxides, organic molecules, and conducting polymers. The various sensing mechanism of functionalized graphene gas sensors are explained and compared. Meanwhile, some existing challenges that may hinder the sensor mass production are discussed and several related solutions are proposed. Possible opportunities and perspective applications of the graphene NH3 sensors are also presented.