Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 593(7859): 418-423, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727703

RESUMO

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Assuntos
Antivirais/farmacologia , Clofazimina/farmacologia , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacocinética , Antivirais/uso terapêutico , Disponibilidade Biológica , Fusão Celular , Linhagem Celular , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Coronavirus/crescimento & desenvolvimento , Coronavirus/patogenicidade , Cricetinae , DNA Helicases/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Mesocricetus , Profilaxia Pré-Exposição , SARS-CoV-2/crescimento & desenvolvimento , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
2.
PLoS Pathog ; 20(4): e1012146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669242

RESUMO

Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.


Assuntos
Apoptose , Herpesvirus Suídeo 1 , Mitocôndrias , Pseudorraiva , Proteínas Virais , Animais , Herpesvirus Suídeo 1/patogenicidade , Herpesvirus Suídeo 1/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Pseudorraiva/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Herpesviridae/patogenicidade , Herpesviridae/genética , Replicação Viral/fisiologia , Humanos , Camundongos Endogâmicos BALB C , Virulência
3.
PLoS Pathog ; 19(9): e1011619, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37708148

RESUMO

The host cell membrane-associated RING-CH 8 protein (MARCH8), a member of the E3 ubiquitin ligase family, regulates intracellular turnover of many transmembrane proteins and shows potent antiviral activities. Generally, 2 antiviral modes are performed by MARCH8. On the one hand, MARCH8 catalyzes viral envelope glycoproteins (VEGs) ubiquitination and thus leads to their intracellular degradation, which is the cytoplasmic tail (CT)-dependent (CTD) mode. On the other hand, MARCH8 traps VEGs at some intracellular compartments (such as the trans-Golgi network, TGN) but without inducing their degradation, which is the cytoplasmic tail-independent (CTI) mode, by which MARCH8 hijacks furin, a cellular proprotein convertase, to block VEGs cleavage. In addition, the MARCH8 C-terminal tyrosine-based motif (TBM) 222YxxL225 also plays a key role in its CTI antiviral effects. In contrast to its antiviral potency, MARCH8 is occasionally hijacked by some viruses and bacteria to enhance their invasion, indicating a duplex role of MARCH8 in host pathogenic infections. This review summarizes MARCH8's antiviral roles and how viruses evade its restriction, shedding light on novel antiviral therapeutic avenues.


Assuntos
Viroses , Humanos , Antivirais/farmacologia , Ligante de CD40 , Proteínas de Membrana , Tirosina , Proteínas do Envelope Viral
4.
J Virol ; 97(2): e0194722, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656013

RESUMO

Members of deltacoronavirus (DCoV) have mostly been identified in diverse avian species as natural reservoirs, though the porcine DCoV (PDCoV) is a major swine enteropathogenic virus with global spread. The important role of aminopeptidase N (APN) orthologues from various mammalian and avian species in PDCoV cellular entry and interspecies transmission has been revealed recently. In this study, comparative analysis indicated that three avian DCoVs, bulbul DCoV HKU11, munia DCoV HKU13, and sparrow DCoV HKU17 (Chinese strain), and PDCoV in the subgenera Buldecovirus are grouped together at whole-genome levels; however, the spike (S) glycoprotein and its S1 subunit of HKU17 are more closely related to night heron DCoV HKU19 in Herdecovirus. Nevertheless, the S1 protein of HKU11, HKU13, or HKU17 bound to or interacted with chicken APN (chAPN) or porcine APN (pAPN) by flow cytometry analysis of cell surface expression of APN and by coimmunoprecipitation in APN-overexpressing cells. Expression of chAPN or pAPN allowed entry of pseudotyped lentiviruses with the S proteins from HKU11, HKU13 and HKU17 into nonsusceptible cells and natural avian and porcine cells, which could be inhibited by the antibody against APN or anti-PDCoV-S1. APN knockdown by siRNA or knockout by CRISPR/Cas9 in chicken or swine cell lines significantly or almost completely blocked infection of these pseudoviruses. Hence, we demonstrate that HKU11, HKU13, and HKU17 with divergent S genes likely engage chAPN or pAPN to enter the cells, suggesting a potential interspecies transmission from wild birds to poultry and from birds to mammals by certain avian DCoVs. IMPORTANCE The receptor usage of avian deltacoronaviruses (DCoVs) has not been investigated thus far, though porcine deltacoronavirus (PDCoV) has been shown to utilize aminopeptidase N (APN) as a cell receptor. We report here that chicken or porcine APN also mediates cellular entry by three avian DCoV (HKU11, HKU13, and HKU17) spike pseudoviruses, and the S1 subunit of three avian DCoVs binds to APN in vitro and in the surface of avian and porcine cells. The results fill the gaps in knowledge about the avian DCoV receptor and elucidate important insights for the monitoring and prevention of potential interspecies transmission of certain avian DCoVs. In view of the diversity of DCoVs, whether this coronavirus genus will cause novel virus to emerge in other mammals from birds, are worthy of further surveillance and investigation.


Assuntos
Antígenos CD13 , Deltacoronavirus , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Animais , Antígenos CD13/genética , Antígenos CD13/metabolismo , Galinhas/metabolismo , Infecções por Coronavirus , Deltacoronavirus/metabolismo , Suínos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Lentivirus/genética , Lentivirus/metabolismo
5.
J Med Virol ; 96(2): e29445, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299743

RESUMO

Membrane-associated RING-CH (MARCH) family proteins were recently reported to inhibit viral replication through multiple modes. Previous work showed that human MARCH8 blocked Ebola virus (EBOV) glycoprotein (GP) maturation. Our study here demonstrates that human MARCH1 and MARCH2 share a similar pattern to MARCH8 in restricting EBOV GP-pseudotyped viral infection. Human MARCH1 and MARCH2 retain EBOV GP at the trans-Golgi network, reduce its cell surface display, and impair EBOV GP-pseudotyped virions infectivity. Furthermore, we uncover that the host proprotein convertase furin could interact with human MARCH1/2 and EBOV GP intracellularly. Importantly, the furin P domain is verified to be recognized by MARCH1/2/8, which is critical for their blocking activities. Besides, bovine MARCH2 and murine MARCH1 also impair EBOV GP proteolytic processing. Altogether, our findings confirm that MARCH1/2 proteins of different mammalian origins showed a relatively conserved feature in blocking EBOV GP cleavage, which could provide clues for subsequent MARCHs antiviral studies and may facilitate the development of novel strategies to antagonize enveloped virus infection.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Bovinos , Humanos , Camundongos , Linhagem Celular , Furina/metabolismo , Glicoproteínas , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
6.
J Biol Chem ; 298(11): 102511, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36259516

RESUMO

Revealing the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and cell-to-cell spread might provide insights for understanding the underlying mechanisms of viral pathogenesis, tropism, and virulence. The signaling pathways involved in SARS-CoV-2 entry and viral spike-mediated cell-to-cell fusion remain elusive. In the current study, we found that macropinocytosis inhibitors significantly suppressed SARS-CoV-2 infection at both the entry and viral spike-mediated cell-to-cell fusion steps. We demonstrated that SARS-CoV-2 entry required the small GTPase Rac1 and its effector kinase p21-activated kinase 1 by dominant-negative and RNAi assays in human embryonic kidney 293T-angiotensin-converting enzyme 2 cells and that the serine protease transmembrane serine protease 2 reversed the decrease in SARS-CoV-2 entry caused by the macropinocytosis inhibitors. Moreover, in the cell-to-cell fusion assay, we confirmed that macropinocytosis inhibitors significantly decreased viral spike-mediated cell-to-cell fusion. Overall, we provided evidence that SARS-CoV-2 utilizes a macropinocytosis pathway to enter target cells and to efficiently promote viral spike-mediated cell-to-cell fusion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Fusão Celular , Internalização do Vírus , Serina Proteases
7.
J Virol ; 96(7): e0013622, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293770

RESUMO

Viruses have evolved diverse strategies to hijack the cellular gene expression system for their replication. The poly(A) binding proteins (PABPs), a family of critical gene expression factors, are viruses' common targets. PABPs act not only as a translation factor but also as a key factor of mRNA metabolism. During viral infections, the activities of PABPs are manipulated by various viruses, subverting the host translation machinery or evading the cellular antiviral defense mechanism. Viruses harness PABPs by modifying their stability, complex formation with other translation initiation factors, or subcellular localization to promote viral mRNAs translation while shutting off or competing with host protein synthesis. For the past decade, many studies have demonstrated the PABPs' roles during viral infection. This review summarizes a comprehensive perspective of PABPs' roles during viral infection and how viruses evade host antiviral defense through the manipulations of PABPs.


Assuntos
COVID-19 , Interações entre Hospedeiro e Microrganismos , Evasão da Resposta Imune , SARS-CoV-2 , Antivirais , Humanos , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/imunologia , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
8.
J Virol ; 96(20): e0131822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173190

RESUMO

Pseudorabies virus (PRV), which is extremely infectious and can infect numerous mammals, has a risk of spillover into humans. Virus-host interactions determine viral entry and spreading. Here, we showed that neuropilin-1 (NRP1) significantly potentiates PRV infection. Mechanistically, NRP1 promoted PRV attachment and entry, and enhanced cell-to-cell fusion mediated by viral glycoprotein B (gB), gD, gH, and gL. Furthermore, through in vitro coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays, NRP1 was found to physically interact with gB, gD, and gH, and these interactions were C-end Rule (CendR) motif independent, in contrast to currently known viruses. Remarkably, we illustrated that the viral protein gB promotes NRP1 degradation via a lysosome-dependent pathway. We further demonstrate that gB promotes NRP1 degradation in a furin-cleavage-dependent manner. Interestingly, in this study, we generated gB furin cleavage site (FCS)-knockout PRV (Δfurin PRV) and evaluated its pathogenesis; in vivo, we found that Δfurin PRV virulence was significantly attenuated in mice. Together, our findings demonstrated that NRP1 is an important host factor for PRV and that NRP1 may be a potential target for antiviral intervention. IMPORTANCE Recent studies have shown accelerated PRV cross-species spillover and that PRV poses a potential threat to humans. PRV infection in humans always manifests as a high fever, tonic-clonic seizures, and encephalitis. Therefore, understanding the interaction between PRV and host factors may contribute to the development of new antiviral strategies against PRV. NRP1 has been demonstrated to be a receptor for several viruses that harbor CendR, including SARS-CoV-2. However, the relationships between NRP1 and PRV are poorly understood. Here, we found that NRP1 significantly potentiated PRV infection by promoting PRV attachment and enhanced cell-to-cell fusion. For the first time, we demonstrated that gB promotes NRP1 degradation via a lysosome-dependent pathway. Last, in vivo, Δfurin PRV virulence was significantly attenuated in mice. Therefore, NRP1 is an important host factor for PRV, and NRP1 may be a potential target for antiviral drug development.


Assuntos
COVID-19 , Herpesvirus Suídeo 1 , Pseudorraiva , Camundongos , Humanos , Animais , Herpesvirus Suídeo 1/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Furina/metabolismo , SARS-CoV-2 , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Proteínas Virais/metabolismo , Antivirais/metabolismo , Mamíferos
9.
J Biol Chem ; 296: 100435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610551

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic represents a global threat, and the interaction between the virus and angiotensin-converting enzyme 2 (ACE2), the primary entry receptor for SARS-CoV-2, is a key determinant of the range of hosts that can be infected by the virus. However, the mechanisms underpinning ACE2-mediated viral entry across species remains unclear. Using infection assay, we evaluated SARS-CoV-2 entry mediated by ACE2 of 11 different animal species. We discovered that ACE2 of Rhinolophus sinicus (Chinese rufous horseshoe bat), Felis catus (domestic cat), Canis lupus familiaris (dog), Sus scrofa (wild pig), Capra hircus (goat), and Manis javanica (Malayan pangolin) facilitated SARS-CoV-2 entry into nonsusceptible cells. Moreover, ACE2 of the pangolin also mediated SARS-CoV-2 entry, adding credence to the hypothesis that SARS-CoV-2 may have originated from pangolins. However, the ACE2 proteins of Rhinolophus ferrumequinum (greater horseshoe bat), Gallus gallus (red junglefowl), Notechis scutatus (mainland tiger snake), or Mus musculus (house mouse) did not facilitate SARS-CoV-2 entry. In addition, a natural isoform of the ACE2 protein of Macaca mulatta (rhesus monkey) with the Y217N mutation was resistant to SARS-CoV-2 infection, highlighting the possible impact of this ACE2 mutation on SARS-CoV-2 studies in rhesus monkeys. We further demonstrated that the Y217 residue of ACE2 is a critical determinant for the ability of ACE2 to mediate SARS-CoV-2 entry. Overall, these results clarify that SARS-CoV-2 can use the ACE2 receptors of multiple animal species and show that tracking the natural reservoirs and intermediate hosts of SARS-CoV-2 is complex.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/epidemiologia , COVID-19/transmissão , Pandemias , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/diagnóstico , COVID-19/imunologia , Gatos , Galinhas/virologia , Quirópteros/virologia , Cães , Elapidae/virologia , Eutérios/virologia , Expressão Gênica , Cabras/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Macaca mulatta/virologia , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos/virologia , Internalização do Vírus
10.
J Virol ; 95(21): e0094421, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406863

RESUMO

Porcine deltacoronavirus (PDCoV) is a recently discovered coronavirus that poses a potential threat to the global swine industry. Although we know that aminopeptidase N (APN) is important for PDCoV replication, it is unclear whether it is the primary functional receptor, and the mechanism by which it promotes viral replication is not fully understood. Here, we systematically investigated the roles of porcine APN (pAPN) during PDCoV infection of nonsusceptible cells, including in viral attachment and internalization. Using a viral entry assay, we found that PDCoV can enter nonsusceptible cells but then fails to initiate efficient replication. pAPN and PDCoV virions clearly colocalized with the endocytotic markers RAB5, RAB7, and LAMP1, suggesting that pAPN mediates PDCoV entry by an endocytotic pathway. Most importantly, our study shows that regardless of which receptor PDCoV engages, only entry by an endocytotic route ultimately leads to efficient viral replication. This knowledge should contribute to the development of efficient antiviral treatments, which are especially useful in preventing cross-species transmission. IMPORTANCE PDCoV is a pathogen with the potential for transmission across diverse species, although the mechanism of such host-switching events (from swine to other species) is poorly understood. Here, we show that PDCoV enters nonsusceptible cells but without efficient replication. We also investigated the key role played by aminopeptidase N in mediating PDCoV entry via an endocytotic pathway. Our results demonstrate that viral entry via endocytosis is a major determinant of efficient PDCoV replication. This knowledge provides a basis for future studies of the cross-species transmissibility of PDCoV and the development of appropriate antiviral drugs.


Assuntos
Antígenos CD13/metabolismo , Deltacoronavirus/fisiologia , Endocitose , Internalização do Vírus , Animais , Linhagem Celular , Endossomos/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Peptídeo Hidrolases/metabolismo , Receptores de Coronavírus/metabolismo , Suínos , Vírion/fisiologia , Ligação Viral , Replicação Viral
11.
J Med Virol ; 94(6): 2384-2387, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34964486

RESUMO

More than 20 members of the human cyclin-dependent kinases (CDKs) family share the feature of being activated by cyclins. CDKs have been involved in diverse biological processes, such as cell cycle, transcription, DNA damage response, and apoptosis. If CDKs are not properly regulated, they can cause diseases like cancer. CDKs are Ser/Thr kinases that work with cyclins to control cell cycle progression. Various CDK-cyclin complexes phosphorylate particular target proteins and drive different cell cycle stages. Accumulating evidence demonstrated that CDKs play an essential role in the cell cycle; however, their roles in antiviral innate immunity are just emerging. This minireview summarizes how CDKs play their roles in antiviral innate immunity. Our goal is to draw attention to the involvement of CDKs in antiviral innate immunity, whether as separate entities or as components of CDK/cyclin complexes that have gotten less attention in the past.


Assuntos
Antivirais , Quinases Ciclina-Dependentes , Antivirais/farmacologia , Ciclo Celular , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Ciclinas/farmacologia , Humanos , Imunidade Inata
12.
J Med Virol ; 94(7): 2977-2985, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35257387

RESUMO

The pandemic coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently the most formidable challenge to humankind. Understanding the complicated virus-host interplay is crucial for fighting against viral infection. A growing number of studies point to the critical roles of RING (really interesting new gene) finger (RNF) proteins during SARS-CoV-2 infection. RNF proteins exert direct antiviral activity by targeting genome and envelope glycoproteins of SARS-CoV-2. Additionally, some RNF members serve as potent regulators for antiviral innate immunity and antibody-dependent neutralization of SARS-CoV-2. Notably, SARS-CoV-2 also hijacks the RNF proteins-mediated ubiquitination process to evade host antiviral innate immunity and enhance viral replication. In this mini-review, we discuss the diverse antiviral mechanisms of RNF proteins and viral immune evasion in an RNF proteins-dependent manner. Understanding the crosstalk between RNF proteins and SARS-CoV-2 infection would help design potential novel targets for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/uso terapêutico , Humanos , Imunidade Inata , Pandemias
13.
J Med Virol ; 94(7): 2962-2968, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35288942

RESUMO

Cyclin-dependent kinases (CDKs) are protein kinases that play a key role in cell division and transcriptional regulation. Recent studies have demonstrated the critical roles of CDKs in various viral infections. However, the molecular processes underpinning CDKs' roles in viral infection and host antiviral defense are unknown. This minireview briefly overviews CDKs' functions and highlights the most recent discoveries of CDKs' emerging roles during viral infections, thereby providing a scientific and theoretical foundation for antiviral regulation and shedding light on developing novel drug targets and therapeutic strategies against viral infection.


Assuntos
COVID-19 , Viroses , Antivirais/farmacologia , Antivirais/uso terapêutico , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/uso terapêutico , Humanos , SARS-CoV-2 , Viroses/tratamento farmacológico
14.
J Med Virol ; 94(9): 4490-4501, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577759

RESUMO

Stimulator of interferon genes (STING) is a pivotal innate immune adaptor, and its functions during DNA virus infections have been extensively documented. However, its homeostatic regulation is not well understood. Our study demonstrates that Unc-93 homolog B1 (UNC93B1) is a crucial checker for STING to prevent hyperactivation. Ectopic expression of UNC93B1 attenuates IFN-ß promoter activity and the transcriptions of IFN-ß, ISG54, and ISG56 genes. Moreover, UNC93B1 also blocks the IRF3 nuclear translocation induced by ectopic expression of both cyclic GMP-AMP synthase (cGAS) and STING and reduces the stability of STING by facilitating its autophagy-lysosome degradation, which can be reversed by lysosome inhibitors. Mechanistically, UNC93B1 interacts with STING and suppresses STING-activated downstream signaling by delivering STING to the lysosomes for degradation, depending on its trafficking capability. UNC93B1 knockout in human embryonic kidney 293T cells facilitates IFN-ß promoter activity, IFN-ß, ISG54, and ISG56 transcriptions, and IRF3 nuclear translocation induced by ectopic expression of cGAS and STING. Infected with herpes simplex virus-1 (HSV-1), UNC93B1 knockdown BJ cells or primary peritoneal macrophages from Unc93b1-deficient (Unc93b1-/- ) mice show enhanced IFN-ß, ISG54, and ISG56 transcriptions, TBK1 phosphorylation, and reduced STING degradation and viral replication. In addition, Unc93b1-/-  mice exhibit higher IFN-ß, ISG54, and ISG56 transcriptions and lower mortality upon HSV-1 infection in vivo. Collectively, these findings demonstrate that UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation and provide novel insights into the function of UNC93B1 in antiviral innate immunity.


Assuntos
Proteínas de Membrana , Proteínas de Membrana Transportadoras , Nucleotidiltransferases , Animais , Autofagia , Células HEK293 , Humanos , Imunidade Inata , Interferon beta/genética , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo , Transdução de Sinais
15.
J Med Virol ; 94(11): 5096-5102, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35815524

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), since its outbreak in December 2019, has been capable of continuing the pandemic by mutating itself into different variants. Mass vaccinations, antibiotic treatment therapy, herd immunity, and preventive measures have reduced the disease's severity from the emerging variants. However, the virus is undergoing recombination among the current two variants: Delta and Omicron, resulting in a new variant, informally known as "Deltacron," which was controversial as it might be a product of lab contamination between Omicron and Delta samples. However, the proclamation was proved wrong, and the experts are putting more effort into better understanding the variant's epidemiological characteristics to control potential outbreaks. This review has discussed the potential mutations in the novel variant and prospective risk factors and therapeutic options in the context of this new variant. This study could be used as a guide for implementing appropriate controls in a sudden outbreak of this new variant.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Surtos de Doenças/prevenção & controle , Humanos , Pandemias , Estudos Prospectivos , SARS-CoV-2/genética
16.
J Med Virol ; 94(5): 1815-1820, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34936124

RESUMO

The polybasic furin cleavage site insertion with four amino acid motifs (PRRA) in spike protein's S1/S2 junction site is important in determining viral infectivity, transmission, and host range. However, there is no review so far explaining the effect of the furin cleavage site of the spike protein on SARS-CoV-2 replication and pathogenesis in the host and immune responses and vaccination. Therefore, here we specifically focused on genomic evolution and properties of the cleavage site of spike protein in the context of SARS-CoV-2 followed by its effect on viral entry, replication, and pathogenesis. We also explored whether the spike protein furin cleavage site affected the host immune responses and SARS-CoV-2 vaccination. This review will help to provide novel insights into the effects of polybasic furin cleavage site on the current COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Furina/metabolismo , Humanos , Imunidade , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinação
17.
J Med Virol ; 94(5): 1825-1832, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35023191

RESUMO

Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide as an Omicron variant. This variant is a heavily mutated virus and designated as a variant of concern by the World Health Organization (WHO). WHO cautioned that the Omicron variant of SARS-CoV-2 held a very high risk of infection, reigniting anxieties about the economy's recovery from the 2-year pandemic. The extensively mutated Omicron variant is likely to spread internationally, posing a high risk of infection surges with serious repercussions in some areas. According to preliminary data, the Omicron variant of SARS-CoV-2 has a higher risk of reinfection. On the other hand, whether the current COVID-19 vaccines could effectively resist the new strain is still under investigation. However, there is very limited information on the current situation of the Omicron variant, such as genomics, transmissibility, efficacy of vaccines, treatment, and management. This review focused on the genomics, transmission, and effectiveness of vaccines against the Omicron variant, which will be helpful for further investigation of a new variant of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Genômica , Humanos , SARS-CoV-2/genética
18.
Cell Mol Life Sci ; 79(1): 2, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910251

RESUMO

DExD/H-box helicases play critical roles in multiple cellular processes, including transcription, cellular RNA metabolism, translation, and infections. Several seminal studies over the past decades have delineated the distinct functions of DExD/H-box helicases in regulating antiviral innate immune signaling pathways, including Toll-like receptors, retinoic acid-inducible gene I-like receptors, cyclic GMP-AMP synthase-the stimulator of interferon gene, and NOD-like receptors signaling pathways. Besides the prominent regulatory roles, there is increasing attention on their functions as nucleic acid sensors involved in antiviral innate immunity. Here we summarize the complex regulatory roles of DExD/H-box helicases in antiviral innate immunity. A better understanding of the underlying molecular mechanisms of DExD/H-box helicases' regulatory roles is vital for developing new therapeutics targeting DExD/H-box helicases and their mediated signaling transduction in viral infectious diseases.


Assuntos
RNA Helicases DEAD-box/metabolismo , Imunidade Inata/genética , RNA/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Humanos , Nucleotidiltransferases/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
19.
Cell Mol Life Sci ; 78(23): 7427-7434, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714359

RESUMO

Viral infections pose a severe threat to humans by causing many infectious, even fatal, diseases, such as the current pandemic disease (COVID-19) since 2019, and understanding how the host innate immune system recognizes viruses has become more important. Endosomal and cytosolic sensors can detect viral nucleic acids to induce type I interferon and proinflammatory cytokines, subsequently inducing interferon-stimulated genes for restricting viral infection. Although viral RNA and DNA sensing generally rely on diverse receptors and adaptors, the crosstalk between DNA and RNA sensing is gradually appreciated. This minireview highlights the overlap between the RNA- and DNA-sensing mechanisms in antiviral innate immunity, which significantly amplifies the antiviral innate responses to restrict viral infection and might be a potential novel target for preventing and treating viral diseases.


Assuntos
COVID-19/imunologia , DNA Viral/imunologia , Imunidade Inata/imunologia , RNA Viral/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , Citocinas/metabolismo , Endossomos/imunologia , Humanos , Interferon Tipo I/metabolismo , Proteínas de Membrana/imunologia , Proteínas Nucleares/imunologia , Fosfoproteínas/imunologia
20.
J Biomed Sci ; 28(1): 17, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33673837

RESUMO

Innate immunity is the first line of host defense against viral infection. After invading into the cells, pathogen-associated-molecular-patterns derived from viruses are recognized by pattern recognition receptors to activate the downstream signaling pathways to induce the production of type I interferons (IFN-I) and inflammatory cytokines, which play critical functions in the host antiviral innate immune responses. Guanylate-binding proteins (GBPs) are IFN-inducible antiviral effectors belonging to the guanosine triphosphatases family. In addition to exerting direct antiviral functions against certain viruses, a few GBPs also exhibit regulatory roles on the host antiviral innate immunity. However, our understanding of the underlying molecular mechanisms of GBPs' roles in viral infection and host antiviral innate immune signaling is still very limited. Therefore, here we present an updated overview of the functions of GBPs during viral infection and in antiviral innate immunity, and highlight discrepancies in reported findings and current challenges for future studies, which will advance our understanding of the functions of GBPs and provide a scientific and theoretical basis for the regulation of antiviral innate immunity.


Assuntos
Proteínas de Ligação ao GTP/genética , Interações Hospedeiro-Patógeno , Imunidade Inata , Viroses/imunologia , Proteínas de Transporte/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanosina Monofosfato/metabolismo , Humanos , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA