Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 325, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345214

RESUMO

BACKGROUND: Physic nut (Jatropha curcas), an inedible oilseed plant, is among the most promising alternative energy sources because of its high oil content, rapid growth and extensive adaptability. Proteins encoded by MADS-box family genes are important transcription factors participated in regulating plant growth, seed development and responses to abiotic stress. However, there has been no in-depth research on the MADS-box genes and their roles in physic nut. RESULTS: In our study, 63 MADS-box genes (JcMADSs) were identified in the physic nut genome, and classed into five groups (MIKCC, Mα, Mß, Mγ, MIKC*) according to phylogenetic comparison with Arabidopsis homologs. Expression profile analysis based on RNA-seq suggested that many JcMADS genes had the strongest expression in seeds, and seven of them responded in leaves to at least one abiotic stressor (drought and/or salinity) at one or more time points. Transient expression analysis and a transactivation assay indicated that JcMADS40 is a nucleus-localized transcriptional activator. Plants overexpressing JcMADS40 did not show altered plant growth, but the overexpressing plants did exhibit reductions in grain size, grain length, grain width, 1000-seed weight and yield per plant. Further data on the reduced grain size in JcMADS40-overexpressing plants supported the putative role of JcMADS genes in seed development. CONCLUSIONS: This study will be useful in order to further understand the process of MADS-box genes involved in regulating growth and development in addition to their functions in abiotic stress resistance, and will eventually provide a theoretical basis for the functional investigation and the exploitation of candidate genes for the molecular improvement of physic nut.


Assuntos
Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Jatropha/genética , Proteínas de Domínio MADS/genética , Oryza/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Secas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/classificação , Família Multigênica/genética , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/classificação , Plantas Geneticamente Modificadas , Salinidade , Sementes/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico
2.
BMC Plant Biol ; 19(1): 298, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286900

RESUMO

BACKGROUND: Homeodomain-leucine zipper (HD-ZIP) transcription factors play important roles in the growth, development and stress responses of plants, including (presumably) physic nut (Jatropha curcas), which has high drought and salinity tolerance. However, although physic nut's genome has been released, there is little knowledge of the functions, expression profiles and evolutionary histories of the species' HD-ZIP genes. RESULTS: In this study, 32 HD-ZIP genes were identified in the physic nut genome (JcHDZs) and divided into four groups (I-IV) based on phylogenetic analysis with homologs from rice, maize and Arabidopsis. The analysis also showed that most of the JcHDZ genes were closer to members from Arabidopsis than to members from rice and maize. Of the 32 JcHDZ genes, most showed differential expression patterns among four tissues (root, stem cortex, leaf, and seed). Expression profile analysis based on RNA-seq data indicated that 15 of the JcHDZ genes respond to at least one abiotic stressor (drought and/or salinity) in leaves at least at one time point. Transient expression of a JcHDZ16-YFP fusion protein in Arabidopsis protoplasts cells showed that JcHDZ16 is localized in the nucleus. In addition, rice seedlings transgenically expressing JcHDZ16 had lower proline contents and activities of antioxidant enzymes (catalase and superoxide dismutase) together with higher relative electrolyte leakage and malondialdehyde contents under salt stress conditions (indicating higher sensitivity) than wild-type plants. The transgenic seedlings also showed increased sensitivity to exogenous ABA, and increases in the transcriptional abundance of several salt stress-responsive genes were impaired in their responses to salt stress. Further data on JcHDZ16-overexpressing plants subjected to salt stress treatment verified the putative role of JcHDZ genes in salt stress responses. CONCLUSION: Our results may provide foundations for further investigation of functions of JcHDZ genes in responses to abiotic stress, and promote application of JcHDZ genes in physic nut breeding.


Assuntos
Jatropha/genética , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Estudo de Associação Genômica Ampla , Jatropha/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
3.
Front Plant Sci ; 14: 1097265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875584

RESUMO

HD-Zip is a plant-specific transcription factor that plays an important regulatory role in plant growth and stress response. However, there have been few reports on the functions of members of the physic nut HD-Zip gene family. In this study, we cloned a HD-Zip I family gene from physic nut by RT-PCR, and named JcHDZ21. Expression pattern analysis showed that JcHDZ21 gene had the highest expression in physic nut seeds, and salt stress inhibited the expression of JcHDZ21 gene. Subcellular localization and transcriptional activity analysis showed that JcHDZ21 protein is localized in the nucleus and has transcriptional activation activity. Salt stress results indicated that JcHDZ21 transgenic plants were smaller and had more severe leaf yellowing compared to those of the wild type. Physiological indicators showed that transgenic plants had higher electrical conductivity and MDA content, and lower proline and betaine content compared with wild-type plants under salt stress. In addition, the expression of abiotic stress-related genes in JcHDZ21 transgenic plants was significantly lower than that in wild type under salt stress. Our results showed that ectopic expression of JcHDZ21 increased the sensitivity of transgenic Arabidopsis to salt stress. This study provides a theoretical basis for the future application of JcHDZ21 gene in the breeding of physic nut stress-tolerant varieties.

4.
PLoS One ; 17(8): e0267684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35984829

RESUMO

WRINKLED1 (WRI1) is a transcription factor which is key to the regulation of seed oil biosynthesis in Arabidopsis. In the study, we identified two WRI1 genes in rice, named OsWRI1a and OsWRI1b, which share over 98% nucleotide similarity and are expressed only at very low levels in leaves and endosperms. The subcellular localization of Arabidopsis protoplasts showed that OsWRI1a encoded a nuclear localized protein. Overexpression of OsWRI1a under the control of the CaMV 35S promoter severely retarded plant growth and development in rice. Expressing the OsWRI1a gene under the control of the P1 promoter of Brittle2 (highly expressed in endosperm but low in leaves and roots) increased the oil content of both leaves and endosperms and upregulated the expression of several genes related to late glycolysis and fatty acid biosynthesis. However, the growth and development of the transgenic plants were also affected, with phenotypes including smaller plant size, later heading time, and fewer and lighter grains. The laminae (especially those of flag leaves) did not turn green and could not unroll normally. Thus, ectopic expression of OsWRI1a in rice enhances oil biosynthesis, but also leads to abnormal plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Crescimento e Desenvolvimento , Lipídeos , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Sementes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
PLoS One ; 16(7): e0254711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34265005

RESUMO

GRF genes have been confirmed to have important regulatory functions in plant growth, development and response to abiotic stress. Although the genome of Jatropha curcas is sequenced, knowledge about the identification of the species' GRF genes and their expression patterns is still lacking. In this study, we characterized the 10 JcGRF genes. A detailed investigation into the physic nut GRF gene family is performed, including analysis of the exon-intron structure, conserved domains, conserved motifs, phylogeny, chromosomal locations, potential small RNA targets and expression profiles under both normal growth and abiotic stress conditions. Phylogenetic analysis indicated that the 10 JcGRF genes were classified into five groups corresponding to group I, II, III, IV and V. The analysis of conserved domains showed that the motifs of JcGRF genes were highly conserved in Jatropha curcas. Expression analysis based on RNA-seq and qRT-PCR showed that almost all JcGRF genes had the highest expression in seeds, but very low expression was detected in the non-seed tissues tested, and four JcGRF genes responded to at least one abiotic stress at at least one treatment point. Our research will provide an important scientific basis for further research on the potential functions of JcGRF genes in Jatropha curcas growth and development, and response to abiotic stress, and will eventually provide candidate genes for the breeding of Jatropha curcas.


Assuntos
Jatropha , Filogenia , Secas , Genoma de Planta , Sementes
6.
Front Genet ; 11: 670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655627

RESUMO

Plant-specific WOX transcription factors have important regulatory functions in plant development and response to abiotic stress. However, the identification and functional analysis of members of the WOX family have rarely been reported in the physic nut plant until now. Our research identified 12 WOX genes (JcWOXs) in physic nut, and these genes were divided into three groups corresponding to the ancient clade, WUS clade, and intermediate clade. Expression analysis based on RNA-seq and qRT-PCR showed that most of the JcWOX genes were expressed in at least one of the tissues tested, whereas five genes were identified as being highly responsive to drought and salt stresses. Subcellular localization analysis in Arabidopsis protoplast cells showed that JcWOX5 encoded a nuclear-localized protein. JcWOX5-overexpression plants increased sensitivity to drought stress, and transgenic plants suggested a lower proline content and CAT activity, higher relative electrolyte leakage, higher MDA content, and higher rate of water loss under drought conditions. Expression of some stress-related genes was obviously lower in the transformed rice lines as compared to their expression in wild-type rice lines under drought stress. Further data on JcWOX5-overexpressing plants reducing drought tolerance verified the potential role of JcWOX genes in responsive to abiotic stress. Collectively, the study provides a foundation for further functional analysis of JcWOX genes and the improvement of physic nut crops.

7.
Front Plant Sci ; 10: 942, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379913

RESUMO

Homeodomain-leucine zipper (HD-Zip) transcription factors are reported to play crucial roles in the growth, development, and stress responses of plants. However, there is little knowledge of the molecular mechanisms involved in physic nut's stress tolerance generally, or the functions of its HD-Zip genes. In the present study, a HD-Zip family transcription factor, designated JcHDZ07, was isolated from physic nut. Expression profile analysis showed that salinity stress inhibited the expression of JcHDZ07. Transient expression of JcHDZ07-YFP in Arabidopsis protoplast cells revealed that JcHDZ07 was a nuclear-localized protein. Additionally, no obvious difference in growth and development between wild-type and JcHDZ07-overexpressing plants was observed in the absence of stress. Our results further indicated that JcHDZ07 overexpressing transgenic plants had lower proline contents, lower survival rates, and activities of catalase and superoxide dismutase, but higher relative electrical leakage and malonaldehyde contents compared with wild-type plants under salinity stress conditions, suggesting that overexpression of JcHDZ07 confers enhanced sensitivity to salinity stress in transgenic Arabidopsis. Expression of salt stress-responsive genes were upregulated in leaves of transgenic plants under salinity stress, but less strongly than in wild-type plants. Collectively, our results suggest that JcHDZ07 functions as an important regulator during the process of plant responses to salinity stress.

8.
Front Plant Sci ; 10: 168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833955

RESUMO

MYB transcription factors have been demonstrated to play key regulatory roles in plant growth, development and abiotic stress response. However, knowledge concerning the involvement of rice MYB genes in salinity and drought stress resistance are largely unknown. In the present study, we cloned and characterized the OsMYB6 gene, which was induced by drought and salinity stress. Subcellular localization of OsMYB6-YFP fusion protein in protoplast cells indicated that OsMYB6 was localized in the nucleus. Overexpression of OsMYB6 in rice did not suggest a negative effect on the growth and development of transgenic plants, but OsMYB6-overexpressing plants showed increased tolerance to drought and salt stress compared with wild-type plants, as are evaluated by higher proline content, higher CAT and SOD activities, lower REL and MDA content in transgenic plants under drought and salt stress conditions. In addition, the expression of abiotic stress-responsive genes were significantly higher in OsMYB6 transgenic plants than that in wild-type plants under drought and salt stress conditions. These results indicate that OsMYB6 gene functions as a stress-responsive transcription factor which plays a positive regulatory role in response to drought and salt stress resistance, and may be used as a candidate gene for molecular breeding of salt-tolerant and drought-tolerant crop varieties.

9.
Front Plant Sci ; 9: 1186, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177937

RESUMO

Physic nut (Jatropha curcas L.) is highly tolerant of barren environments and a significant biofuel plant. To probe mechanisms of its tolerance mechanisms, we have analyzed genome-wide transcriptional profiles of 8-week-old physic nut seedlings subjected to Pi deficiency (P-) for 2 and 16 days, and Pi-sufficient conditions (P+) controls. We identified several phosphate transporters, purple acid phosphatases, and enzymes of membrane lipid metabolism among the 272 most differentially expressed genes. Genes of the miR399/PHO2 pathway (IPS, miR399, and members of the SPX family) showed alterations in expression. We also found that expression of several transcription factor genes was modulated by phosphate starvation stress in physic nut seedlings, including an AP2/ERF gene (JcERF035), which was down-regulated in both root and leaf tissues under Pi-deprivation. In JcERF035-overexpressing Arabidopsis lines both numbers and lengths of first-order lateral roots were dramatically reduced, but numbers of root hairs on the primary root tip were significantly elevated, under both P+ and P- conditions. Furthermore, the transgenic plants accumulated less anthocyanin but had similar Pi contents to wild-type plants under P-deficiency conditions. Expression levels of the tested genes related to anthocyanin biosynthesis and regulation, and genes induced by low phosphate, were significantly lower in shoots of transgenic lines than in wild-type plants under P-deficiency. Our data show that down-regulation of the JcERF035 gene might contribute to the regulation of root system architecture and both biosynthesis and accumulation of anthocyanins in aerial tissues of plants under low Pi conditions.

10.
PLoS One ; 13(8): e0201024, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067784

RESUMO

Auxin response factors (ARF) are important transcription factors which mediate the transcription of auxin responsive genes by binding directly to auxin response elements (AuxREs) found in the promoter regions of these genes. To date, no information has been available about the genome-wide organization of the ARF transcription factor family in physic nut. In this study, 17 ARF genes (JcARFs) are identified in the physic nut genome. A detailed investigation into the physic nut ARF gene family is performed, including analysis of the exon-intron structure, conserved domains, conserved motifs, phylogeny, chromosomal locations, potential small RNA targets and expression profiles under various conditions. Phylogenetic analysis suggests that the 17 JcARF proteins are clustered into 6 groups, and most JcARF proteins from the physic nut reveal closer relationships with those from Arabidopsis than those from rice. Of the 17 JcARF genes, eight are predicted to be the potential targets of small RNAs; most of the genes show differential patterns of expression among four tissues (root, stem cortex, leaf, and seed); and qRT-PCR indicates that the expression of all JcARF genes is inhibited or induced in response to exogenous auxin. Expression profile analysis based on RNA-seq data shows that in leaves, 11 of the JcARF genes respond to at least one abiotic stressor (drought and/or salinity) at, as a minimum, at least one time point. Our results provide valuable information for further studies on the roles of JcARF genes in regulating physic nut's growth, development and responses to abiotic stress.


Assuntos
Jatropha/genética , Jatropha/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Cromossomos de Plantas , Sequência Conservada , Desidratação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Jatropha/crescimento & desenvolvimento , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Especificidade da Espécie , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
11.
Front Plant Sci ; 8: 306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28321231

RESUMO

Transcription factors of the AP2/ERF family play important roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, a physic nut AP2/ERF gene, JcDREB2, was functionally characterized. Real-time PCR analysis revealed that JcDREB2 was expressed mainly in the leaf and could be induced by abscisic acid but suppressed by gibberellin (GA) and salt. Transient expression of a JcDREB2-YFP fusion protein in Arabidopsis protoplasts cells suggested that JcDREB2 is localized in the nucleus. Rice plants overexpressing JcDREB2 exhibited dwarf and GA-deficient phenotypes with shorter shoots and roots than those of wild-type plants. The dwarfism phenotype could be rescued by the application of exogenous GA3. The expression levels of GA biosynthetic genes including OsGA20ox1, OsGA20ox2, OsGA20ox4, OsGA3ox2, OsCPS1, OsKO2, and OsKAO were significantly reduced in plants overexpressing JcDREB2. Overexpression of JcDREB2 in rice increased sensitivity to salt stress. Increases in the expression levels of several salt-tolerance-related genes in response to salt stress were impaired in JcDREB2-overexpressing plants. These results demonstrated not only that JcDREB2 influences GA metabolism, but also that it can participate in the regulation of the salt stress response in rice.

12.
Front Plant Sci ; 7: 1315, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630651

RESUMO

Two isoforms of starch phosphorylase (PHO; EC 2.4.1.1), plastidic PHO1 and cytosolic PHO2, have been found in all plants studied to date. Another starch phosphorylase-like gene, PHO3, which is an ortholog of Chlamydomonas PHOB, has been detected in some plant lineages. In this study, we identified three PHO isoform (LjPHO) genes in the Lotus japonicus genome. Expression of the LjPHO3 gene was observed in all tissues tested in L. japonicus, and the LjPHO3 protein was located in the chloroplast. Overexpression of LjPHO3 in L. japonicus resulted in a drastic decline in starch granule sizes and starch content in leaves. The LjPHO3 overexpression transgenic seedlings were smaller, and showed decreased pollen fertility and seed set rate. Our results suggest that LjPHO3 may participate in transitory starch metabolism in L. japonicus leaves, but its catalytic properties remain to be studied.

13.
PLoS One ; 11(3): e0150879, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26943337

RESUMO

The AP2/ERF transcription factors play crucial roles in plant growth, development and responses to biotic and abiotic stresses. A total of 119 AP2/ERF genes (JcAP2/ERFs) have been identified in the physic nut genome; they include 16 AP2, 4 RAV, 1 Soloist, and 98 ERF genes. Phylogenetic analysis indicated that physic nut AP2 genes could be divided into 3 subgroups, while ERF genes could be classed into 11 groups or 43 subgroups. The AP2/ERF genes are non-randomly distributed across the 11 linkage groups of the physic nut genome and retain many duplicates which arose from ancient duplication events. The expression patterns of several JcAP2/ERF duplicates in the physic nut showed differences among four tissues (root, stem, leaf, and seed), and 38 JcAP2/ERF genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots according to analysis of digital gene expression tag data. The expression of JcERF011 was downregulated by salinity stress in physic nut roots. Overexpression of the JcERF011 gene in rice plants increased its sensitivity to salinity stress. The increased expression levels of several salt tolerance-related genes were impaired in the JcERF011-overexpressing plants under salinity stress.


Assuntos
Genoma de Planta , Jatropha/genética , Família Multigênica , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Salinidade , Estresse Fisiológico/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Éxons/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ligação Genética , Íntrons/genética , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA