Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 33(40)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35732158

RESUMO

We report a simple metal ion-catechol coordination strategy to coat ruthenium-catechol polymer complex (TAC-Ru) on the surface of carbon nanotubes (CNT) to form a core-shell structure (abbreviated as CNT@TAC-Ru). This is achieved by firstly polymerizing catechol and boronic acid monomers on the surface of CNT to form a boronate ester polymer (BP) shell. Then, Ru3+is used to etch the BP shell, and cleave the dynamic boronate ester bond, leading to the formation of a CNT@ruthenium-catechol coordination complex based on the coordinative efficiency of the catechol group. The electrocatalytic property of the CNT@TAC-Ru composite can be activated through electrochemical cycling treatment. The as-activated CNT@TAC-Ru exhibits evidently improved hydrogen evolution reaction (HER) performance with an overpotential of 10 mV in 1.0 M KOH at a current density of 10 mA cm-2, which is better than that of commercial Pt/C (32 mV). And the long-term stability is also desirable. This work provides a pyrolysis-free method to form metal-polymer-carbon composite with high HER performance under the alkaline condition.

2.
Macromol Rapid Commun ; 43(23): e2200562, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35926186

RESUMO

The underlying trend of colloidal synthesis has focused on extending the structure and composition complexity of colloidal particles. Hollow and yolk-shell particles are successful examples that have potential applications in frontier fields. In this paper, a facile and controllable etching method based on the molecular exchange of the dynamic imine bond to generate cavities in polymer particles is developed. Starting from boronate ester polymer particles and inorganic@boronate core-shell particles with the imine bonds incorporated in the polymer networks, the etching method easily affords hollow and yolk-shell particles with tunable shell thicknesses. The molecular exchange dynamics analysis indicates that guest amine molecules cause the reconstruction of imine bonds and the leakage of molecular and oligomer fragments, resulting in the formation of the hollow structure. This molecular exchange-based etching method may be of interest in the construction of polymer architectures with increased composition and structure complexities.

3.
Adv Sci (Weinh) ; 9(24): e2201685, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35798314

RESUMO

Stimuli-responsive supercapacitors have attracted broad interest in constructing self-powered smart devices. However, due to the demand for high cyclic stability, supercapacitors usually utilize stable or inert electrode materials, which are difficult to exhibit dynamic or stimuli-responsive behavior. Herein, this issue is addressed by designing a MoS2 @carbon core-shell structure with ultrathin MoS2 nanosheets incorporated in the carbon matrix. In the three-electrode system, MoS2 @carbon delivers a specific capacitance of 1302 F g-1 at a current density of 1.0 A g-1 and shows a 90% capacitance retention after 10 000 charging-discharging cycles. The MoS2 @carbon-based asymmetric supercapacitor displays an energy density of 75.1 Wh kg-1 at the power density of 900 W kg-1 . Because the photo-generated electrons can efficiently migrate from MoS2 nanosheets to the carbon matrix, the assembled photo-responsive supercapacitor can answer the stimulation of ultraviolet-visible-near infrared illumination by increasing the capacitance. Particularly, under the stimulation of UV light (365 nm, 0.08 W cm-2 ), the device exhibits a ≈4.50% (≈13.9 F g-1 ) increase in capacitance after each charging-discharging cycle. The study provides a guideline for designing multi-functional supercapacitors that serve as both the energy supplier and the photo-detector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA