Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Ther ; 30(11): 3477-3498, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35791879

RESUMO

Reactive oxygen species (ROS) derived from oxygen-dependent mitochondrial metabolism are the essential drivers of cardiomyocyte (CM) cell-cycle arrest in adulthood. Mitochondria-localized circular RNAs (circRNAs) play important roles in regulating mitochondria-derived ROS production, but their functions in cardiac regeneration are still unknown. Herein, we investigated the functions and underlying mechanism of mitochondria-localized circSamd4 in cardiac regeneration. We found that circSamd4 was selectively expressed in fetal and neonatal CMs. The transcription factor Nrf2 controlled circSamd4 expression by binding to the promoter of circSamd4 host gene. CircSamd4 overexpression reduced while circSamd4 silenced increased mitochondrial oxidative stress and subsequent oxidative DNA damage. Moreover, circSamd4 overexpression induced CM proliferation and prevented CM apoptosis, which reduced the size of the fibrotic area and improved cardiac function after myocardial infarction (MI). Mechanistically, circSamd4 reduced oxidative stress generation and maintained mitochondrial dynamics by inducing the mitochondrial translocation of the Vcp protein, which downregulated Vdac1 expression and prevented the mitochondrial permeability transition pore (mPTP) from opening. Our findings suggest that circSamd4 is a novel therapeutic target for heart failure after MI.


Assuntos
Infarto do Miocárdio , RNA Circular , Humanos , Recém-Nascido , Adulto , RNA Circular/genética , Espécies Reativas de Oxigênio/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo
2.
J Adv Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821358

RESUMO

INTRODUCTION: Sympathetic hyperinnervation plays an important role in modulating the vascular smooth muscle cell (VSMC) phenotype and vascular diseases, but its role in abdominal aortic aneurysm (AAA) is still unknown. OBJECTIVES: This study aimed to investigate the role of sympathetic hyperinnervation in promoting AAA development and the underlying mechanism involved. METHODS: Western blotting and immunochemical staining were used to detect sympathetic hyperinnervation. We performed sympathetic denervation through coeliac ganglionectomy (CGX) and 6-OHDA administration to understand the role of sympathetic hyperinnervation in AAA and investigated the underlying mechanisms through transcriptome and functional studies. Sema4D knockout (Sema4D-/-) mice were utilized to determine the involvement of Sema4D in inducing sympathetic hyperinnervation and AAA development. RESULTS: We observed sympathetic hyperinnervation, the most important form of sympathetic neural remodeling, in both mouse AAA models and AAA patients. Elimination of sympathetic hyperinnervation by CGX or 6-OHDA significantly inhibited AAA development and progression. We further revealed that sympathetic hyperinnervation promoted VSMC phenotypic switching in AAA by releasing extracellular ATP (eATP) and activating eATP-P2rx4-p38 signaling. Moreover, single-cell RNA sequencing revealed that Sema4D secreted by osteoclast-like cells induces sympathetic nerve diffusion and hyperinnervation through binding to Plxnb1. We consistently observed that AAA progression was significantly ameliorated in Sema4D-deficient mice. CONCLUSIONS: Sympathetic hyperinnervation driven by osteoclast-like cell-derived Sema4D promotes VSMC phenotypic switching and accelerates pathological aneurysm progression by activating the eATP/P2rx4/p38 pathway. Inhibition of sympathetic hyperinnervation emerges as a potential novel therapeutic strategy for preventing and treating AAA.

3.
J Adv Res ; 53: 199-218, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36587763

RESUMO

INTRODUCTION: Extracellular vesicles (EVs)-mediated cell-to-cell communication is crucial for hypoxia-induced cell proliferation and tissue repair, but its function in endogenous cardiac regeneration is still unknown. OBJECTIVES: Herein, we aimed to determine whether hypoxia-inducible circWhsc1 in endothelial EVs promoted cardiomyocyte (CM) proliferation and cardiac regeneration. METHODS: RNA-sequence data was used to identify EV circRNAs that were involved into endogenous cardiac regeneration. Quantitative polymerase chain reactions were conducted to determine circRNA expression in tissue, cells and EVs. Gain- and loss-of-function assays were performed to explore the function of EV-derived circWhsc1 during cardiac regeneration. Western blotting and RNA pulldown assays were used to investigate its underlying mechanism. RESULTS: We found that circWhsc1 was enriched in neonatal mouse hearts, particularly in cardiac ECs, and was further upregulated both in ECs and EC-derived EVs under hypoxic conditions. When cocultured with hypoxia-preconditioned neonatal ECs or their secreted EVs, both neonatal and adult CMs exhibited an increased proliferation rate and G2/M ratio, which could be attenuated by knockdown of circWhsc1 in ECs. In vivo, EC-restricted overexpression of circWhsc1 and EV-mediated delivery of circWhsc1 induced CM proliferation, alleviated cardiac fibrosis and restored cardiac function following myocardial infarction in adult mice. Mechanistic studies revealed that EV-derived circWhsc1 activated TRIM59 by enhancing its phosphorylation, thereby reinforcing the binding of TRIM59 to STAT3, phosphorylating STAT3 and inducing CM proliferation. CONCLUSION: The current study demonstrated that hypoxia-inducible circWhsc1 in EC-derived EVs induces CM proliferation and heart regeneration. EC-CM communication mediated by EV-derived circWhsc1 might represent a prospective therapeutic target for inducing cardiac repair post-myocardial infarction.


Assuntos
Vesículas Extracelulares , Infarto do Miocárdio , Animais , Camundongos , Proliferação de Células , Ciclina B2/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , RNA/metabolismo
4.
Aging Dis ; 14(5): 1778-1798, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196124

RESUMO

Abdominal aortic aneurysm (AAA) is a multifactorial disease characterized by various pathophysiological processes, including chronic inflammation, oxidative stress, and proteolytic activity in the aortic wall. Stress-induced premature senescence (SIPS) has been implicated in regulating these pathophysiological processes, but whether SIPS contributes to AAA formation remains unknown. Here, we detected SIPS in AAA from patients and young mice. The senolytic agent ABT263 prevented AAA development by inhibiting SIPS. Additionally, SIPS promoted the transformation of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a synthetic phenotype, whereas inhibition of SIPS by the senolytic drug ABT263 suppressed VSMC phenotypic switching. RNA sequencing and single-cell RNA sequencing analysis revealed that fibroblast growth factor 9 (FGF9), secreted by stress-induced premature senescent VSMCs, was a key regulator of VSMC phenotypic switching and that FGF9 knockdown abolished this effect. We further showed that the FGF9 level was critical for the activation of PDGFRß/ERK1/2 signaling, facilitating VSMC phenotypic change. Taken together, our findings demonstrated that SIPS is critical for VSMC phenotypic switching through the activation of FGF9/PDGFRß/ERK1/2 signaling, promoting AAA development and progression. Thus, targeting SIPS with the senolytic agent ABT263 may be a valuable therapeutic strategy for the prevention or treatment of AAA.

5.
Clin Exp Pharmacol Physiol ; 37(4): 435-40, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19878215

RESUMO

1. The diuretic amiloride is known to modulate the activity of several types of ion channels and membrane receptors in addition to its inhibitory effects on many ion transport systems. However, the effects of amiloride on some important ion channels and receptors, such as GABA(A) receptors, in the central nervous system have not been characterized. 2. In the present study, we investigated the functional action of amiloride on native GABA(A) receptors in cultured neurons of rat inferior colliculus using whole-cell patch-clamp recordings. 3. Amiloride reversibly inhibited the amplitude of the GABA-induced current (I(GABA)) in a concentration-dependent manner (IC(50) 454 +/- 24 micromol/L) under conditions of voltage-clamp with a holding potential at -60 mV. The inhibition depended on drug application mode and was independent of membrane potential. Amiloride did not change the reversal potential of I(GABA). Moreover, amiloride induced a parallel right-ward shift in the concentration-response curve for I(GABA) without altering the maximal value and Hill coefficient. 4. The present study shows that amiloride competitively inhibits the current mediated by native GABA(A) receptors in the brain region, probably via a direct action on GABA-binding sites on the receptor. The findings suggest that the functional actions of amiloride on GABA(A) receptors may result in possible side-effects on the central nervous system in the case of direct application of this drug into the cerebrospinal fluid for treatment of diseases such as brain tumours.


Assuntos
Amilorida/farmacologia , Diuréticos/farmacologia , Antagonistas GABAérgicos/farmacologia , Antagonistas de Receptores de GABA-A , Colículos Inferiores/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Amilorida/efeitos adversos , Animais , Animais Recém-Nascidos , Células Cultivadas , Diuréticos/efeitos adversos , Antagonistas GABAérgicos/efeitos adversos , Colículos Inferiores/citologia , Cinética , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/efeitos adversos , Bloqueadores dos Canais de Sódio/farmacologia
6.
Prog Neurobiol ; 189: 101790, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32200043

RESUMO

Pain symptoms can be transmitted across generations, but the mechanisms underlying these outcomes remain poorly understood. Here, we identified an essential role for primary somatosensory cortical (S1) glutamate neuronal DNA methyl-CpG binding protein 2 (MeCP2) in the transgenerational transmission of pain. In a female mouse chronic pain model, the offspring displayed significant pain sensitization. In these mice, MeCP2 expression was increased in S1 glutamate (GluS1) neurons, correlating with increased neuronal activity. Downregulation of GluS1 neuronal MeCP2 in maternal mice with pain abolished offspring pain sensitization, whereas overexpression of MeCP2 in naïve maternal mice induced pain sensitization in offspring. Notably, single-cell sequencing and chromatin immunoprecipitation analysis showed that the expression of a wide range of genes was changed in offspring and maternal GluS1 neurons, some of which were regulated by MeCP2. These results collectively demonstrate the putative importance of MeCP2 as a key regulator in pain transgenerational transmission through actions on GluS1 neuronal maladaptation.


Assuntos
Dor Crônica/genética , Epigênese Genética/fisiologia , Hiperalgesia/genética , Proteína 2 de Ligação a Metil-CpG/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/metabolismo , Animais , Comportamento Animal/fisiologia , Dor Crônica/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Epigênese Genética/genética , Feminino , Ácido Glutâmico/metabolismo , Hiperalgesia/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/genética , Neurônios/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA