Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biostatistics ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074174

RESUMO

Cancer is molecularly heterogeneous, with seemingly similar patients having different molecular landscapes and accordingly different clinical behaviors. In recent studies, gene expression networks have been shown as more effective/informative for cancer heterogeneity analysis than some simpler measures. Gene interconnections can be classified as "direct" and "indirect," where the latter can be caused by shared genomic regulators (such as transcription factors, microRNAs, and other regulatory molecules) and other mechanisms. It has been suggested that incorporating the regulators of gene expressions in network analysis and focusing on the direct interconnections can lead to a deeper understanding of the more essential gene interconnections. Such analysis can be seriously challenged by the large number of parameters (jointly caused by network analysis, incorporation of regulators, and heterogeneity) and often weak signals. To effectively tackle this problem, we propose incorporating prior information contained in the published literature. A key challenge is that such prior information can be partial or even wrong. We develop a two-step procedure that can flexibly accommodate different levels of prior information quality. Simulation demonstrates the effectiveness of the proposed approach and its superiority over relevant competitors. In the analysis of a breast cancer dataset, findings different from the alternatives are made, and the identified sample subgroups have important clinical differences.

2.
EMBO Rep ; 23(1): e53231, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34726300

RESUMO

The exon junction complex controls the translation, degradation, and localization of spliced mRNAs, and three of its core subunits also play a role in splicing. Here, we show that a fourth subunit, Barentsz, has distinct functions within and separate from the exon junction complex in Drosophila neuromuscular development. The distribution of mitochondria in larval muscles requires Barentsz as well as other exon junction complex subunits and is not rescued by a Barentsz transgene in which residues required for binding to the core subunit eIF4AIII are mutated. In contrast, interactions with the exon junction complex are not required for Barentsz to promote the growth of neuromuscular synapses. We find that the Activin ligand Dawdle shows reduced expression in barentsz mutants and acts downstream of Barentsz to control synapse growth. Both barentsz and dawdle are required in motor neurons, muscles, and glia for normal synapse growth, and exogenous Dawdle can rescue synapse growth in the absence of barentsz. These results identify a biological function for Barentsz that is independent of the exon junction complex.


Assuntos
Proteínas de Drosophila , Proteínas de Ligação a RNA , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons/genética , Proteínas de Ligação a RNA/metabolismo , Sinapses/metabolismo
3.
Int J Cancer ; 150(2): 374-386, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34569060

RESUMO

Recurrent upper tract urothelial carcinomas (UTUCs) arise in the context of nephropathy linked to exposure to the herbal carcinogen aristolochic acid (AA). Here we delineated the molecular programs underlying UTUC tumorigenesis in patients from endemic aristolochic acid nephropathy (AAN) regions in Southern Europe. We applied an integrative multiomics analysis of UTUCs, corresponding unaffected tissues and of patient urines. Quantitative microRNA (miRNA) and messenger ribonucleic acid (mRNA) expression profiling, immunohistochemical analysis by tissue microarrays and exome and transcriptome sequencing were performed in UTUC and nontumor tissues. Urinary miRNAs of cases undergoing surgery were profiled before and after tumor resection. Ribonucleic acid (RNA) and protein levels were analyzed using appropriate statistical tests and trend assessment. Dedicated bioinformatic tools were used for analysis of pathways, mutational signatures and result visualization. The results delineate UTUC-specific miRNA:mRNA networks comprising 89 miRNAs associated with 1,862 target mRNAs, involving deregulation of cell cycle, deoxyribonucleic acid (DNA) damage response, DNA repair, bladder cancer, oncogenes, tumor suppressors, chromatin structure regulators and developmental signaling pathways. Key UTUC-specific transcripts were confirmed at the protein level. Exome and transcriptome sequencing of UTUCs revealed AA-specific mutational signature SBS22, with 68% to 76% AA-specific, deleterious mutations propagated at the transcript level, a possible basis for neoantigen formation and immunotherapy targeting. We next identified a signature of UTUC-specific miRNAs consistently more abundant in the patients' urine prior to tumor resection, thereby defining biomarkers of tumor presence. The complex gene regulation programs of AAN-associated UTUC tumors involve regulatory miRNAs prospectively applicable to noninvasive urine-based screening of AAN patients for cancer presence and recurrence.


Assuntos
Ácidos Aristolóquicos/efeitos adversos , Biomarcadores Tumorais/genética , Carcinoma de Células de Transição/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/urina , Mutação , Neoplasias da Bexiga Urinária/patologia , Biomarcadores Tumorais/urina , Carcinoma de Células de Transição/induzido quimicamente , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/urina , Exoma , Seguimentos , Humanos , Prognóstico , Proteoma/análise , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/urina
4.
Nucleic Acids Res ; 48(1): 486-499, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31745563

RESUMO

Cross-species pathway transplantation enables insight into a biological process not possible through traditional approaches. We replaced the enzymes catalyzing the entire Saccharomyces cerevisiae adenine de novo biosynthesis pathway with the human pathway. While the 'humanized' yeast grew in the absence of adenine, it did so poorly. Dissection of the phenotype revealed that PPAT, the human ortholog of ADE4, showed only partial function whereas all other genes complemented fully. Suppressor analysis revealed other pathways that play a role in adenine de-novo pathway regulation. Phylogenetic analysis pointed to adaptations of enzyme regulation to endogenous metabolite level 'setpoints' in diverse organisms. Using DNA shuffling, we isolated specific amino acids combinations that stabilize the human protein in yeast. Thus, using adenine de novo biosynthesis as a proof of concept, we suggest that the engineering methods used in this study as well as the debugging strategies can be utilized to transplant metabolic pathway from any origin into yeast.


Assuntos
Adenina/biossíntese , Vias Biossintéticas/genética , Carboxiliases/genética , Cromossomos Artificiais Humanos/química , Peptídeo Sintases/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Carboxiliases/metabolismo , Cromossomos Artificiais Humanos/metabolismo , Teste de Complementação Genética , Engenharia Genética/métodos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Peptídeo Sintases/metabolismo , Filogenia , Plasmídeos/química , Plasmídeos/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Bioinformatics ; 36(12): 3877-3878, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298413

RESUMO

MOTIVATION: Retrotransposition is an important force in shaping the human genome and is involved in prenatal development, disease and aging. Current genome browsers are not optimized for visualizing the experimental evidence for retrotransposon insertions. RESULTS: We have developed a specialized browser to visualize the evidence for retrotransposon insertions for both targeted and whole-genome sequencing data. AVAILABILITY AND IMPLEMENTATION: TranspoScope's source code, as well as installation instructions, are available at https://github.com/FenyoLab/transposcope.


Assuntos
Retroelementos , Software , Genoma Humano , Humanos , Retroelementos/genética , Sequenciamento Completo do Genoma
6.
Proc Natl Acad Sci U S A ; 115(24): E5526-E5535, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29802231

RESUMO

Transposable elements (TEs) represent a substantial fraction of many eukaryotic genomes, and transcriptional regulation of these factors is important to determine TE activities in human cells. However, due to the repetitive nature of TEs, identifying transcription factor (TF)-binding sites from ChIP-sequencing (ChIP-seq) datasets is challenging. Current algorithms are focused on subtle differences between TE copies and thus bias the analysis to relatively old and inactive TEs. Here we describe an approach termed "MapRRCon" (mapping repeat reads to a consensus) which allows us to identify proteins binding to TE DNA sequences by mapping ChIP-seq reads to the TE consensus sequence after whole-genome alignment. Although this method does not assign binding sites to individual insertions in the genome, it provides a landscape of interacting TFs by capturing factors that bind to TEs under various conditions. We applied this method to screen TFs' interaction with L1 in human cells/tissues using ENCODE ChIP-seq datasets and identified 178 of the 512 TFs tested as bound to L1 in at least one biological condition with most of them (138) localized to the promoter. Among these L1-binding factors, we focused on Myc and CTCF, as they play important roles in cancer progression and 3D chromatin structure formation. Furthermore, we explored the transcriptomes of The Cancer Genome Atlas breast and ovarian tumor samples in which a consistent anti-/correlation between L1 and Myc/CTCF expression was observed, suggesting that these two factors may play roles in regulating L1 transcription during the development of such tumors.


Assuntos
Regulação da Expressão Gênica/genética , Elementos Reguladores de Transcrição/genética , Retroelementos/genética , Fatores de Transcrição/genética , Algoritmos , Neoplasias da Mama/genética , Cromatina/genética , Feminino , Genoma/genética , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Transcriptoma/genética
7.
Proc Natl Acad Sci U S A ; 114(5): E733-E740, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096347

RESUMO

Mammalian genomes are replete with interspersed repeats reflecting the activity of transposable elements. These mobile DNAs are self-propagating, and their continued transposition is a source of both heritable structural variation as well as somatic mutation in human genomes. Tailored approaches to map these sequences are useful to identify insertion alleles. Here, we describe in detail a strategy to amplify and sequence long interspersed element-1 (LINE-1, L1) retrotransposon insertions selectively in the human genome, transposon insertion profiling by next-generation sequencing (TIPseq). We also report the development of a machine-learning-based computational pipeline, TIPseqHunter, to identify insertion sites with high precision and reliability. We demonstrate the utility of this approach to detect somatic retrotransposition events in high-grade ovarian serous carcinoma.


Assuntos
Elementos Nucleotídeos Longos e Dispersos/genética , Neoplasias Ovarianas/genética , Algoritmos , Feminino , Genoma Humano , Humanos , Aprendizado de Máquina , Reação em Cadeia da Polimerase/métodos
8.
Proc Natl Acad Sci U S A ; 114(8): E1470-E1479, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28174266

RESUMO

As the use of synthetic biology both in industry and in academia grows, there is an increasing need to ensure biocontainment. There is growing interest in engineering bacterial- and yeast-based safeguard (SG) strains. First-generation SGs were based on metabolic auxotrophy; however, the risk of cross-feeding and the cost of growth-controlling nutrients led researchers to look for other avenues. Recent strategies include bacteria engineered to be dependent on nonnatural amino acids and yeast SG strains that have both transcriptional- and recombinational-based biocontainment. We describe improving yeast Saccharomyces cerevisiae-based transcriptional SG strains, which have near-WT fitness, the lowest possible escape rate, and nanomolar ligands controlling growth. We screened a library of essential genes, as well as the best-performing promoter and terminators, yielding the best SG strains in yeast. The best constructs were fine-tuned, resulting in two tightly controlled inducible systems. In addition, for potential use in the prevention of industrial espionage, we screened an array of possible "decoy molecules" that can be used to mask any proprietary supplement to the SG strain, with minimal effect on strain fitness.


Assuntos
Genoma/genética , Saccharomyces cerevisiae/genética , Genes Essenciais/genética , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas/genética , Biologia Sintética/métodos , Regiões Terminadoras Genéticas/genética , Transcrição Gênica/genética
9.
Mol Cell Proteomics ; 15(3): 1060-71, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26631509

RESUMO

Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis.


Assuntos
Processamento Alternativo , Neoplasias Mamárias Experimentais/genética , Mutação , Proteômica/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Genoma , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , Espectrometria de Massas em Tandem , Transcriptoma
10.
Hum Mol Genet ; 24(17): 5024-39, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26071365

RESUMO

Cleft palate is a common birth defect in humans. Therefore, understanding the molecular genetics of palate development is important from both scientific and medical perspectives. Lhx6 and Lhx8 encode LIM homeodomain transcription factors, and inactivation of both genes in mice resulted in profound craniofacial defects including cleft secondary palate. The initial outgrowth of the palate was severely impaired in the mutant embryos, due to decreased cell proliferation. Through genome-wide transcriptional profiling, we discovered that p57(Kip2) (Cdkn1c), encoding a cell cycle inhibitor, was up-regulated in the prospective palate of Lhx6(-/-);Lhx8(-/-) mutants. p57(Kip2) has been linked to Beckwith-Wiedemann syndrome and IMAGe syndrome in humans, which are developmental disorders with increased incidents of palate defects among the patients. To determine the molecular mechanism underlying the regulation of p57(Kip2) by the Lhx genes, we combined chromatin immunoprecipitation, in silico search for transcription factor-binding motifs, and in vitro reporter assays with putative cis-regulatory elements. The results of these experiments indicated that LHX6 and LHX8 regulated p57(Kip2) via both direct and indirect mechanisms, with the latter mediated by Forkhead box (FOX) family transcription factors. Together, our findings uncovered a novel connection between the initiation of palate development and a cell cycle inhibitor via LHX. We propose a model in which Lhx6 and Lhx8 negatively regulate p57(Kip2) expression in the prospective palate area to allow adequate levels of cell proliferation and thereby promote normal palate development. This is the first report elucidating a molecular genetic pathway downstream of Lhx in palate development.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/genética , Proteínas do Tecido Nervoso/genética , Palato/embriologia , Palato/metabolismo , Fatores de Transcrição/genética , Animais , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Maxila/embriologia , Maxila/metabolismo , Camundongos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Organogênese/genética , Palato/patologia , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
11.
Nat Methods ; 11(5): 559-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24658142

RESUMO

Promoters and enhancers establish precise gene transcription patterns. The development of functional approaches for their identification in mammalian cells has been complicated by the size of these genomes. Here we report a high-throughput functional assay for directly identifying active promoter and enhancer elements called FIREWACh (Functional Identification of Regulatory Elements Within Accessible Chromatin), which we used to simultaneously assess over 80,000 DNA fragments derived from nucleosome-free regions within the chromatin of embryonic stem cells (ESCs) and identify 6,364 active regulatory elements. Many of these represent newly discovered ESC-specific enhancers, showing enriched binding-site motifs for ESC-specific transcription factors including SOX2, POU5F1 (OCT4) and KLF4. The application of FIREWACh to additional cultured cell types will facilitate functional annotation of the genome and expand our view of transcriptional network dynamics.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Regiões Promotoras Genéticas , Animais , Sítios de Ligação , Cromatina/química , Biologia Computacional , Desoxirribonuclease I/metabolismo , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Biblioteca Gênica , Genes Reporter , Técnicas Genéticas , Genoma , Proteínas de Fluorescência Verde/metabolismo , Fator 4 Semelhante a Kruppel , Lentivirus/genética , Lentivirus/metabolismo , Luciferases/metabolismo , Camundongos , Plasmídeos/metabolismo , Transcrição Gênica , Transgenes
12.
J Biol Chem ; 289(44): 30289-30301, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25190800

RESUMO

Development of the mammalian face requires a large number of genes that are expressed with spatio-temporal specificity, and transcriptional regulation mediated by enhancers plays a key role in the precise control of gene expression. Using chromatin immunoprecipitation for a histone marker of active enhancers, we generated a genome-wide map of candidate enhancers from the maxillary arch (primordium for the upper jaw) of mouse embryos. Furthermore, we confirmed multiple novel craniofacial enhancers near the genes implicated in human palate defects through functional assays. We characterized in detail one of the enhancers (Lhx8_enh1) located upstream of Lhx8, a key regulatory gene for craniofacial development. Lhx8_enh1 contained an evolutionarily conserved binding site for lymphoid enhancer factor/T-cell factor family proteins, which mediate the transcriptional regulation by the WNT/ß-catenin signaling pathway. We demonstrated in vitro that WNT/ß-catenin signaling was indeed essential for the expression of Lhx8 in the maxillary arch cells and that Lhx8_enh1 was a direct target of the WNT/ß-catenin pathway. Together, we uncovered a molecular mechanism for the regulation of Lhx8, and we provided valuable resources for further investigation into the gene regulatory network of craniofacial development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt , Animais , Sequência de Bases , Sítios de Ligação , Região Branquial/embriologia , Região Branquial/metabolismo , Linhagem Celular , Mapeamento Cromossômico , Sequência Consenso , Redes Reguladoras de Genes , Histonas/metabolismo , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Maxila/embriologia , Maxila/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Dados de Sequência Molecular , Palato/anormalidades , Cultura Primária de Células , Fatores de Transcrição/metabolismo
13.
BMC Genomics ; 13 Suppl 8: S12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23282014

RESUMO

BACKGROUND: Due to the recent rapid development in ChIP-seq technologies, which uses high-throughput next-generation DNA sequencing to identify the targets of Chromatin Immunoprecipitation, there is an increasing amount of sequencing data being generated that provides us with greater opportunity to analyze genome-wide protein-DNA interactions. In particular, we are interested in evaluating and enhancing computational and statistical techniques for locating protein binding sites. Many peak detection systems have been developed; in this study, we utilize the following six: CisGenome, MACS, PeakSeq, QuEST, SISSRs, and TRLocator. RESULTS: We define two methods to merge and rescore the regions of two peak detection systems and analyze the performance based on average precision and coverage of transcription start sites. The results indicate that ChIP-seq peak detection can be improved by fusion using score or rank combination. CONCLUSION: Our method of combination and fusion analysis would provide a means for generic assessment of available technologies and systems and assist researchers in choosing an appropriate system (or fusion method) for analyzing ChIP-seq data. This analysis offers an alternate approach for increasing true positive rates, while decreasing false positive rates and hence improving the ChIP-seq peak identification process.


Assuntos
Algoritmos , Imunoprecipitação da Cromatina , Anticorpos/imunologia , DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ligação Proteica , Proteínas/imunologia , Proteínas/metabolismo
14.
Philos Trans R Soc Lond B Biol Sci ; 375(1795): 20190335, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32075555

RESUMO

Long interspersed element-1 (LINE-1, L1) sequences, which comprise about 17% of human genome, are the product of one of the most active types of mobile DNAs in modern humans. LINE-1 insertion alleles can cause inherited and de novo genetic diseases, and LINE-1-encoded proteins are highly expressed in some cancers. Genome-wide LINE-1 mapping in single cells could be useful for defining somatic and germline retrotransposition rates, and for enabling studies to characterize tumour heterogeneity, relate insertions to transcriptional and epigenetic effects at the cellular level, or describe cellular phylogenies in development. Our laboratories have reported a genome-wide LINE-1 insertion site mapping method for bulk DNA, named transposon insertion profiling by sequencing (TIPseq). There have been significant barriers applying LINE-1 mapping to single cells, owing to the chimeric artefacts and features of repetitive sequences. Here, we optimize a modified TIPseq protocol and show its utility for LINE-1 mapping in single lymphoblastoid cells. Results from single-cell TIPseq experiments compare well to known LINE-1 insertions found by whole-genome sequencing and TIPseq on bulk DNA. Among the several approaches we tested, whole-genome amplification by multiple displacement amplification followed by restriction enzyme digestion, vectorette ligation and LINE-1-targeted PCR had the best assay performance. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.


Assuntos
Elementos de DNA Transponíveis/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Mutagênese Insercional , Linhagem Celular , Humanos , Análise de Sequência de DNA , Análise de Célula Única
15.
BMC Genomics ; 10: 504, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19878565

RESUMO

BACKGROUND: The origin of novel traits and their subsequent diversification represent central themes in evo-devo and evolutionary ecology. Here we explore the genetic and genomic basis of a class of traits that is both novel and highly diverse, in a group of organisms that is ecologically complex and experimentally tractable: horned beetles. RESULTS: We developed two high quality, normalized cDNA libraries for larval and pupal Onthophagus taurus and sequenced 3,488 ESTs that assembled into 451 contigs and 2,330 singletons. We present the annotation and a comparative analysis of the conservation of the sequences. Microarrays developed from the combined libraries were then used to contrast the transcriptome of developing primordia of head horns, prothoracic horns, and legs. Our experiments identify a first comprehensive list of candidate genes for the evolution and diversification of beetle horns. We find that developing horns and legs show many similarities as well as important differences in their transcription profiles, suggesting that the origin of horns was mediated partly, but not entirely, by the recruitment of genes involved in the formation of more traditional appendages such as legs. Furthermore, we find that horns developing from the head and prothorax differ in their transcription profiles to a degree that suggests that head and prothoracic horns are not serial homologs, but instead may have evolved independently from each other. CONCLUSION: We have laid the foundation for a systematic analysis of the genetic basis of horned beetle development and diversification with the potential to contribute significantly to several major frontiers in evolutionary developmental biology.


Assuntos
Besouros/crescimento & desenvolvimento , Besouros/genética , Etiquetas de Sequências Expressas , Cornos/crescimento & desenvolvimento , Cornos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Besouros/anatomia & histologia , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Genoma de Inseto/genética , Larva/genética , Masculino , Pupa/genética
16.
BMC Genomics ; 10: 174, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19383159

RESUMO

BACKGROUND: EST sequencing projects are increasing in scale and scope as the genome sequencing technologies migrate from core sequencing centers to individual research laboratories. Effectively, generating EST data is no longer a bottleneck for investigators. However, processing large amounts of EST data remains a non-trivial challenge for many. Web-based EST analysis tools are proving to be the most convenient option for biologists when performing their analysis, so these tools must continuously improve on their utility to keep in step with the growing needs of research communities. We have developed a web-based EST analysis pipeline called ESTPiper, which streamlines typical large-scale EST analysis components. RESULTS: The intuitive web interface guides users through each step of base calling, data cleaning, assembly, genome alignment, annotation, analysis of gene ontology (GO), and microarray oligonucleotide probe design. Each step is modularized. Therefore, a user can execute them separately or together in batch mode. In addition, the user has control over the parameters used by the underlying programs. Extensive documentation of ESTPiper's functionality is embedded throughout the web site to facilitate understanding of the required input and interpretation of the computational results. The user can also download intermediate results and port files to separate programs for further analysis. In addition, our server provides a time-stamped description of the run history for reproducibility. The pipeline can also be installed locally, allowing researchers to modify ESTPiper to suit their own needs. CONCLUSION: ESTPiper streamlines the typical process of EST analysis. The pipeline was initially designed in part to support the Daphnia pulex cDNA sequencing project. A web server hosting ESTPiper is provided at http://estpiper.cgb.indiana.edu/ to now support projects of all size. The software is also freely available from the authors for local installations.


Assuntos
Etiquetas de Sequências Expressas , Software , Biologia Computacional , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genômica/métodos , Armazenamento e Recuperação da Informação/métodos , Internet , Alinhamento de Sequência
17.
Mob DNA ; 10: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899333

RESUMO

BACKGROUND: Transposable elements make up a significant portion of the human genome. Accurately locating these mobile DNAs is vital to understand their role as a source of structural variation and somatic mutation. To this end, laboratories have developed strategies to selectively amplify or otherwise enrich transposable element insertion sites in genomic DNA. RESULTS: Here we describe a technique, Transposon Insertion Profiling by sequencing (TIPseq), to map Long INterspersed Element 1 (LINE-1, L1) retrotransposon insertions in the human genome. This method uses vectorette PCR to amplify species-specific L1 (L1PA1) insertion sites followed by paired-end Illumina sequencing. In addition to providing a step-by-step molecular biology protocol, we offer users a guide to our pipeline for data analysis, TIPseqHunter. Our recent studies in pancreatic and ovarian cancer demonstrate the ability of TIPseq to identify invariant (fixed), polymorphic (inherited variants), as well as somatically-acquired L1 insertions that distinguish cancer genomes from a patient's constitutional make-up. CONCLUSIONS: TIPseq provides an approach for amplifying evolutionarily young, active transposable element insertion sites from genomic DNA. Our rationale and variations on this protocol may be useful to those mapping L1 and other mobile elements in complex genomes.

18.
PLoS One ; 13(4): e0195747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29649254

RESUMO

Male mammals must simultaneously produce prodigious numbers of sperm and maintain an adequate reserve of stem cells to ensure continuous production of gametes throughout life. Failures in the mechanisms responsible for balancing germ cell differentiation and spermatogonial stem cell (SSC) self-renewal can result in infertility. We discovered a novel requirement for Ubiquitous Expressed Transcript (UXT) in spermatogenesis by developing the first knockout mouse model for this gene. Constitutive deletion of Uxt is embryonic lethal, while conditional knockout in the male germline results in a Sertoli cell-only phenotype during the first wave of spermatogenesis that does not recover in the adult. This phenotype begins to manifest between 6 and 7 days post-partum, just before meiotic entry. Gene expression analysis revealed that Uxt deletion downregulates the transcription of genes governing SSC self-renewal, differentiation, and meiosis, consistent with its previously defined role as a transcriptional co-factor. Our study has revealed the first in vivo function for UXT in the mammalian germline as a regulator of distinct transcriptional programs in SSCs and differentiating spermatogonia.


Assuntos
Chaperonas Moleculares/genética , Espermatogênese/genética , Animais , Caspase 3/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Deleção de Genes , Genes Letais , Imuno-Histoquímica , Aprendizado de Máquina , Masculino , Meiose/genética , Camundongos , Camundongos Knockout , Chaperonas Moleculares/metabolismo , Fenótipo , Espermatogônias/metabolismo , Testículo/metabolismo , Testículo/patologia
19.
Science ; 355(6329)2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28280154

RESUMO

We describe design, rapid assembly, and characterization of synthetic yeast Sc2.0 chromosome VI (synVI). A mitochondrial defect in the synVI strain mapped to synonymous coding changes within PRE4 (YFR050C), encoding an essential proteasome subunit; Sc2.0 coding changes reduced Pre4 protein accumulation by half. Completing Sc2.0 specifies consolidation of 16 synthetic chromosomes into a single strain. We investigated phenotypic, transcriptional, and proteomewide consequences of Sc2.0 chromosome consolidation in poly-synthetic strains. Another "bug" was discovered through proteomic analysis, associated with alteration of the HIS2 transcription start due to transfer RNA deletion and loxPsym site insertion. Despite extensive genetic alterations across 6% of the genome, no major global changes were detected in the poly-synthetic strain "omics" analyses. This work sets the stage for completion of a designer, synthetic eukaryotic genome.


Assuntos
Cromossomos Artificiais de Levedura/química , Cromossomos Artificiais de Levedura/genética , Saccharomyces cerevisiae/genética , Biologia Sintética/métodos , Células Artificiais/metabolismo , Mapeamento Físico do Cromossomo , Complexo de Endopeptidases do Proteassoma/genética , Proteômica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
20.
Mob DNA ; 7: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27843500

RESUMO

BACKGROUND: Gliomas are the most common primary brain tumors in adults. We sought to understand the roles of endogenous transposable elements in these malignancies by identifying evidence of somatic retrotransposition in glioblastomas (GBM). We performed transposon insertion profiling of the active subfamily of Long INterspersed Element-1 (LINE-1) elements by deep sequencing (TIPseq) on genomic DNA of low passage oncosphere cell lines derived from 7 primary GBM biopsies, 3 secondary GBM tissue samples, and matched normal intravenous blood samples from the same individuals. RESULTS: We found and PCR validated one somatically acquired tumor-specific insertion in a case of secondary GBM. No LINE-1 insertions present in primary GBM oncosphere cultures were missing from corresponding blood samples. However, several copies of the element (11) were found in genomic DNA from blood and not in the oncosphere cultures. SNP 6.0 microarray analysis revealed deletions or loss of heterozygosity in the tumor genomes over the intervals corresponding to these LINE-1 insertions. CONCLUSIONS: These findings indicate that LINE-1 retrotransposon can act as an infrequent insertional mutagen in secondary GBM, but that retrotransposition is uncommon in these central nervous system tumors as compared to other neoplasias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA