Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mem Cognit ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744776

RESUMO

Memories are pliable and can be biased by post-encoding information. In targeted memory reactivation (TMR) studies, participants encode information then sleep, during which time sounds or scents that were previously associated with the encoded images are re-presented in an effort to trigger reactivation of the associated memory traces. Upon subsequent testing, memory for reactivated items is often enhanced. Is sleep essential for this process? The literature on awake TMR is small and findings are mixed. Here, we asked English-speaking adults to learn Japanese vocabulary words. During a subsequent active rest phase, participants played Tetris while sound cues associated with the vocabulary words were presented. Results showed that when memories were reactivated, they were either disrupted (Experiment 1) or unaffected (Experiments 2, 3). These findings indicate that awake TMR is not beneficial, and may actually impair subsequent memory. These findings have important implications for research on memory consolidation and reactivation.

2.
J Neurosci ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879096

RESUMO

Hippocampal impairments are reliably associated with post-traumatic stress disorder (PTSD); however, little research has characterized how increased threat-sensitivity may interact with arousal responses to alter hippocampal reactivity, and further how these interactions relate to the sequelae of trauma-related symptoms. In a sample of individuals recently exposed to trauma (N=116, 76 Female), we found that PTSD symptoms at 2-weeks were associated with decreased hippocampal responses to threat as assessed with functional magnetic resonance imaging (fMRI). Further, the relationship between hippocampal threat sensitivity and PTSD symptomology only emerged in individuals who showed transient, high threat-related arousal, as assayed by an independently collected measure of Fear Potentiated Startle. Collectively, our finding suggests that development of PTSD is associated with threat-related decreases in hippocampal function, due to increases in fear-potentiated arousal.Significance StatementAlterations in hippocampal function linked to threat-related arousal are reliably associated with post-traumatic stress disorder (PTSD); however, how these alterations relate to the sequelae of trauma-related symptoms is unknown. Prior models based on non-trauma samples suggest that arousal may impact hippocampal neurophysiology leading to maladaptive behavior. Here we show that decreased hippocampal threat sensitivity interacts with fear-potentiated startle to predict PTSD symptoms. Specifically, individuals with high fear-potentiated startle and low, transient hippocampal threat sensitivity showed the greatest PTSD symptomology. These findings bridge literatures of threat-related arousal and hippocampal function to better understand PTSD risk.

3.
J Cogn Neurosci ; 35(9): 1446-1462, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348130

RESUMO

Systems consolidation theories posit that consolidation occurs primarily through a coordinated communication between hippocampus and neocortex [Moscovitch, M., & Gilboa, A. Systems consolidation, transformation and reorganization: Multiple trace theory, trace transformation theory and their competitors. PsyArXiv, 2021; Kumaran, D., Hassabis, D., & McClelland, J. L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends in Cognitive Sciences, 20, 512-534, 2016; McClelland, J. L., & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419-457, 1995]. Recent sleep studies in rodents have shown that hippocampus and visual cortex replay the same information at temporal proximity ("co-replay"; Lansink, C. S., Goltstein, P. M., Lankelma, J. V., McNaughton, B. L., & Pennartz, C. M. A. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biology, 7, e1000173, 2009; Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I., & Battaglia, F. P. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience, 12, 919-926, 2009; Wierzynski, C. M., Lubenov, E. V., Gu, M., & Siapas, A. G. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron, 61, 587-596, 2009; Ji, D., & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100-107, 2007). We developed a novel repetition time (TR)-based co-reactivation analysis method to study hippocampal-cortical co-replays in humans using fMRI. Thirty-six young adults completed an image (face or scene) and location paired associate encoding task in the scanner, which were preceded and followed by resting state scans. We identified post-encoding rest TRs (± 1) that showed neural reactivation of each image-location trials in both hippocampus (HPC) and category-selective cortex (fusiform face area [FFA]). This allowed us to characterize temporally proximal coordinated reactivations ("co-reactivations") between HPC and FFA. Moreover, we found that increased HPC-FFA co-reactivations were associated with incorrectly recognized trials after a 1-week delay (p = .004). Finally, we found that these HPC-FFA co-reactivations were also associated with trials that were initially correctly recognized immediately after encoding but were later forgotten in 1-day (p = .043) and 1-week delay period (p = .031). We discuss these results from a trace transformation perspective [Sekeres, M. J., Winocur, G., & Moscovitch, M. The hippocampus and related neocortical structures in memory transformation. Neuroscience Letters, 680, 39-53, 2018; Winocur, G., & Moscovitch, M. Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17, 766-780, 2011] and speculate that HPC-FFA co-reactivations may be integrating related events, at the expense of disrupting event-specific details, hence leading to forgetting.


Assuntos
Hipocampo , Vigília , Adulto Jovem , Humanos , Vigília/fisiologia , Hipocampo/fisiologia , Aprendizagem , Sono/fisiologia , Córtex Pré-Frontal/fisiologia
4.
Dev Sci ; 26(6): e13409, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37183213

RESUMO

The ongoing stream of sensory experience is so complex and ever-changing that we tend to parse this experience at "event boundaries," which structures and strengthens memory. Memory processes undergo profound change across early childhood. Whether young children also divide their ongoing processing along event boundaries, and if those boundaries relate to memory, could provide important insight into the development of memory systems. In Study 1, 4-7-year-old children and adults segmented a cartoon, and we tested their memory. Children's event boundaries were more variable than adults' and differed in location and consistency of agreement. Older children's event segmentation was more adult-like than younger children's, and children who segmented events more like adults had better memory for those events. In Study 2, we asked whether these developmental differences in event segmentation had their roots in distinct neural representations. A separate group of 4-8-year-old children watched the same cartoon while undergoing an fMRI scan. In the right hippocampus, greater pattern dissimilarity across event boundaries compared to within events was evident for both child and adult behavioral boundaries, suggesting children and adults share similar event cognition. However, the boundaries identified by a data-driven Hidden Markov Model found that a different brain region-the left and right angular gyrus-aligned only with event boundaries defined by children. Overall, these data suggest that children's event cognition is reasonably well-developed by age 4 but continues to become more adult-like across early childhood. RESEARCH HIGHLIGHTS: Adults naturally break their experience into events, which structures and strengthens memory, but less is known about children's event perception and memory. Study 1 had adults and children segment and remember events from an animated show, and Study 2 compared those segmentations to other children's fMRI data. Children show better recognition and temporal order memory and more adult-like event segmentation with age, and children who segment more like adults have better memory. Children's and adults' behavioral boundaries mapped onto pattern similarity differences in hippocampus, and children's behavioral boundaries matched a data-driven model's boundaries in angular gyrus.


Assuntos
Cognição , Memória , Adulto , Criança , Humanos , Pré-Escolar , Adolescente , Rememoração Mental , Encéfalo , Hipocampo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA