Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 20(13): e2306561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37968810

RESUMO

The electrochemical properties of vanadium-based materials as cathode materials for aqueous zinc ion batteries are still restricted by low conductivity, sluggish reaction kinetics, and poor structural stability. Herein, the [VO6] octahedron, as the basic unit of vanadium-oxide layer of ammonium vanadates (NH4V4O10, denoted as NVO), is incorporated by F atoms to regulate the coordinated environment of vanadium. Density functional theory (DFT) calculations and experimental results show that both physicochemical and electrochemical properties of NVO are improved by F-doping. The enhanced electronic conductivity accelerates the electron transfer and the expanded interlayer spacing expedites the diffusion kinetics of zinc ions. As a result, the F-doped NVO (F-NVO) electrode shows a high discharge capacity (465 mAh g-1 at 0.1 A g-1), good rate capability (260 mAh g-1 at 5 A g-1), and long-term cycling stability (88% capacity retention over 2000 cycles at 4 A g-1). The reaction kinetics and energy storage mechanism of F-NVO are further validated by in situ and ex situ characterizations.

2.
Small ; 19(40): e2303227, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37264764

RESUMO

Vanadyl phosphate (VOPO4 ·2H2 O) has been regarded as one of the most promising cathode materials for aqueous Zn-ion batteries due to its distinct layered structure. However, VOPO4 ·2H2 O has not yet demonstrated the exceptional Zn ion storage performance owing to the structural deterioration during repeated charging/discharging process and poor intrinsic conductivity. In this work, 2D sodium vanadyl phosphate (NaVOPO4 ·0.83H2 O, denoted as NaVOP) is designed as a cathode material for Zn-ion batteries, in which sodium ions are preinserted into the interlayer, replacing part of water. Benefiting from the in situ surface oxidization, improved electronic conductivity, and increased hydrophobicity, the NaVOP electrode exhibits a high discharge capacity of 187 mAh g-1 at 0.1 A g-1 after activation, excellent rate capability and enhanced cycling performance with 85% capacity retention after 1500 cycles at 1 A g-1 . The energy storage mechanism of the NaVOP nanoflakes based on the rapid Zn2+ and H+ intercalation pseudocapacitance are investigated via multiple ex situ characterizations.

3.
ACS Nano ; 16(3): 4588-4598, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35258924

RESUMO

Vanadium-based materials have been extensively studied as promising cathode materials for zinc-ion batteries because of their multiple valences and adjustable ion-diffusion channels. However, the sluggish kinetics of Zn-ion intercalation and less stable layered structure remain bottlenecks that limit their further development. The present work introduces potassium ions to partially substitute ammonium ions in ammonium vanadate, leading to a subtle shrinkage of lattice distance and the increased oxygen vacancies. The resulting potassium ammonium vanadate exhibits a high discharge capacity (464 mAh g-1 at 0.1 A g-1) and excellent cycling stability (90% retention over 3000 cycles at 5 A g-1). The excellent electrochemical properties and battery performances are attributed to the rich oxygen vacancies. The introduction of K+ to partially replace NH4+ appears to alleviate the irreversible deammoniation to prevent structural collapse during ion insertion/extraction. Density functional theory calculations show that potassium ammonium vanadate has a modulated electron structure and a better zinc-ion diffusion path with a lower migration barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA