Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 48(4): 375-390, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36564251

RESUMO

The fundamental biological importance and complexity of allosterically regulated proteins stem from their central role in signal transduction and cellular processes. Recently, machine-learning approaches have been developed and actively deployed to facilitate theoretical and experimental studies of protein dynamics and allosteric mechanisms. In this review, we survey recent developments in applications of machine-learning methods for studies of allosteric mechanisms, prediction of allosteric effects and allostery-related physicochemical properties, and allosteric protein engineering. We also review the applications of machine-learning strategies for characterization of allosteric mechanisms and drug design targeting SARS-CoV-2. Continuous development and task-specific adaptation of machine-learning methods for protein allosteric mechanisms will have an increasingly important role in bridging a wide spectrum of data-intensive experimental and theoretical technologies.


Assuntos
COVID-19 , Humanos , Sítio Alostérico , Regulação Alostérica , SARS-CoV-2/metabolismo , Proteínas/química , Aprendizado de Máquina
2.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37544659

RESUMO

Gene regulatory networks (GRNs) reveal the complex molecular interactions that govern cell state. However, it is challenging for identifying causal relations among genes due to noisy data and molecular nonlinearity. Here, we propose a novel causal criterion, neighbor cross-mapping entropy (NME), for inferring GRNs from both steady data and time-series data. NME is designed to quantify 'continuous causality' or functional dependency from one variable to another based on their function continuity with varying neighbor sizes. NME shows superior performance on benchmark datasets, comparing with existing methods. By applying to scRNA-seq datasets, NME not only reliably inferred GRNs for cell types but also identified cell states. Based on the inferred GRNs and further their activity matrices, NME showed better performance in single-cell clustering and downstream analyses. In summary, based on continuous causality, NME provides a powerful tool in inferring causal regulations of GRNs between genes from scRNA-seq data, which is further exploited to identify novel cell types/states and predict cell type-specific network modules.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Entropia , Fatores de Tempo , Análise por Conglomerados
3.
Chem Rev ; 123(11): 7081-7118, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37162476

RESUMO

The regulation and utilization of thermal energy is increasingly important in modern society due to the growing demand for heating and cooling in applications ranging from buildings, to cooling high power electronics, and from personal thermal management to the pursuit of renewable thermal energy technologies. Over billions of years of natural selection, biological organisms have evolved unique mechanisms and delicate structures for efficient and intelligent regulation and utilization of thermal energy. These structures also provide inspiration for developing advanced thermal engineering materials and systems with extraordinary performance. In this review, we summarize research progress in biological and bioinspired thermal energy materials and technologies, including thermal regulation through insulation, radiative cooling, evaporative cooling and camouflage, and conversion and utilization of thermal energy from solar thermal radiation and biological bodies for vapor/electricity generation, temperature/infrared sensing, and communication. Emphasis is placed on introducing bioinspired principles, identifying key bioinspired structures, revealing structure-property-function relationships, and discussing promising and implementable bioinspired strategies. We also present perspectives on current challenges and outlook for future research directions. We anticipate that this review will stimulate further in-depth research in biological and bioinspired thermal energy materials and technologies, and help accelerate the growth of this emerging field.


Assuntos
Materiais Biomiméticos , Eletrônica , Gases , Calefação , Energia Renovável
4.
Nucleic Acids Res ; 51(W1): W427-W431, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37102691

RESUMO

Allostery refers to the biological process by which an effector modulator binds to a protein at a site distant from the active site, known as allosteric site. Identifying allosteric sites is essential for discovering allosteric process and is considered a critical factor in allosteric drug development. To facilitate related research, we developed PASSer (Protein Allosteric Sites Server) at https://passer.smu.edu, a web application for fast and accurate allosteric site prediction and visualization. The website hosts three trained and published machine learning models: (i) an ensemble learning model with extreme gradient boosting and graph convolutional neural network, (ii) an automated machine learning model with AutoGluon and (iii) a learning-to-rank model with LambdaMART. PASSer accepts protein entries directly from the Protein Data Bank (PDB) or user-uploaded PDB files, and can conduct predictions within seconds. The results are presented in an interactive window that displays protein and pockets' structures, as well as a table that summarizes predictions of the top three pockets with the highest probabilities/scores. To date, PASSer has been visited over 49 000 times in over 70 countries and has executed over 6 200 jobs.


Assuntos
Proteínas , Software , Sítio Alostérico , Proteínas/química , Redes Neurais de Computação , Aprendizado de Máquina , Regulação Alostérica
5.
Nano Lett ; 24(7): 2157-2164, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319745

RESUMO

Carbon support is essential for electrocatalysis, but limitations remain, as carbon corrosion can lead to electrocatalyst degradation and affect the long-term durability of electrocatalysts. Here, we studied the corrosion dynamics of carbon nanotubes (CNTs) and Vulcan carbon (VC) together with platinum (Pt) nanoparticles in real time by liquid cell (LC) transmission electron microscopy (TEM). The results showed that CNTs with a high degree of graphitization exhibited higher corrosion resistance compared to VC. Furthermore, we observed that the main degradation path of Pt nanoparticles in Pt/CNTs was ripening, while in Pt/VC, it was aggregation and coalescence, which was dominated by the interactions between Pt nanoparticles and different hybridization of carbon supports. Finally, we performed an ex situ CV stability test to confirm the conclusions obtained from in situ experiments. This work provides deep insights into the corrosion mechanism of carbon-supported electrocatalysts to optimize the design of electrocatalysts with a higher durability.

6.
J Comput Chem ; 45(17): 1493-1504, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38476039

RESUMO

Avena sativa phototropin 1 light-oxygen-voltage 2 domain (AsLOV2) is a model protein of Per-Arnt-Sim (PAS) superfamily, characterized by conformational changes in response to external environmental stimuli. This conformational change begins with the unfolding of the N-terminal A'α helix in the dark state followed by the unfolding of the C-terminal Jα helix. The light state is characterized by the unfolded termini and the subsequent modifications in hydrogen bond patterns. In this photoreceptor, ß-sheets are identified as crucial components for mediating allosteric signal transmission between the two termini. Through combined experimental and computational investigations, the Hß and Iß strands are recognized as the most critical and influential ß-sheets in AsLOV2's allosteric mechanism. To elucidate the role of these ß-sheets, we introduced 13 distinct mutations (F490L, N492A, L493A, F494L, H495L, L496F, Q497A, R500A, F509L, Q513A, L514A, D515V, and T517V) and conducted comprehensive molecular dynamics simulations. In-depth hydrogen bond analyses emphasized the role of two hydrogen bonds, Asn482-Leu453 and Gln479-Val520, in the observed distinct behaviors of L493A, L496F, Q497A, and D515V mutants. This illustrates the role of ß-sheets in the transmission of the allosteric signal upon the photoactivation of the light state.


Assuntos
Simulação de Dinâmica Molecular , Regulação Alostérica , Conformação Proteica em Folha beta , Fototropinas/química , Fototropinas/metabolismo , Ligação de Hidrogênio , Conformação Proteica
7.
Phys Rev Lett ; 132(10): 104001, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518322

RESUMO

Phototaxis phenomenon is fundamental and critical for optical manipulation of micro-objects. Here, we report the size-dependent negative or positive phototaxis behaviors for microdroplets containing interfacial energy absorber flying in a laser. The critical diameters for such negative-to-positive turnover are studied through both experiments and simulation with different liquids and absorbers, which establishes the mechanism and reveals the role of both the liquid and the absorber inside the microdroplets. This study offers new insight for the manipulation of the phototaxis behavior of micro-objects, showing potential applications in optical trapping and transporting systems that involve light-microdroplet interactions.

8.
J Chem Inf Model ; 64(5): 1657-1681, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38373700

RESUMO

The latest wave of SARS-CoV-2 Omicron variants displayed a growth advantage and increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with atomistic simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.86 spike variant with ACE2 host receptor and distinct classes of antibodies. We adapted several AlphaFold2 approaches to predict both the structure and conformational ensembles of the Omicron BA.2.86 spike protein in the complex with the host receptor. The results showed that the AlphaFold2-predicted structural ensemble of the BA.2.86 spike protein complex with ACE2 can accurately capture the main conformational states of the Omicron variant. Complementary to AlphaFold2 structural predictions, microsecond molecular dynamics simulations reveal the details of the conformational landscape and produced equilibrium ensembles of the BA.2.86 structures that are used to perform mutational scanning of spike residues and characterize structural stability and binding energy hotspots. The ensemble-based mutational profiling of the receptor binding domain residues in the BA.2 and BA.2.86 spike complexes with ACE2 revealed a group of conserved hydrophobic hotspots and critical variant-specific contributions of the BA.2.86 convergent mutational hotspots R403K, F486P, and R493Q. To examine the immune evasion properties of BA.2.86 in atomistic detail, we performed structure-based mutational profiling of the spike protein binding interfaces with distinct classes of antibodies that displayed significantly reduced neutralization against the BA.2.86 variant. The results revealed the molecular basis of compensatory functional effects of the binding hotspots, showing that BA.2.86 lineage may have evolved to outcompete other Omicron subvariants by improving immune evasion while preserving binding affinity with ACE2 via through a compensatory effect of R493Q and F486P convergent mutational hotspots. This study demonstrated that an integrative approach combining AlphaFold2 predictions with complementary atomistic molecular dynamics simulations and robust ensemble-based mutational profiling of spike residues can enable accurate and comprehensive characterization of structure, dynamics, and binding mechanisms of newly emerging Omicron variants.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos , Mutação
9.
Phys Chem Chem Phys ; 26(25): 17720-17744, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869513

RESUMO

In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles evolution and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamics (MD) simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and MD simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and MD simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.


Assuntos
Enzima de Conversão de Angiotensina 2 , Simulação de Dinâmica Molecular , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Humanos , Termodinâmica , Conformação Proteica , Sítios de Ligação , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , COVID-19/virologia
10.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876757

RESUMO

With the increasing pursuit of intelligent systems, the integration of human components into functional systems provides a promising route to the ultimate human-compatible intelligent systems. In this work, we explored the integration of the human hand as the powerless and multiplexed infrared (IR) light source in different functional systems. With the spontaneous IR radiation, the human hand provides a different option as an IR light source. Compared to engineered IR light sources, the human hand brings sustainability with no need of external power and also additional level of controllability to the functional systems. Besides the whole hand, each finger of the hand can also independently provide IR radiation, and the IR radiation from each finger can be selectively diffracted by specific gratings, which helps the hand serve as a multiplexed IR light source. Considering these advantages, we show that the human hand can be integrated into various engineered functional systems. The integration of hand in an encryption/decryption system enables both unclonable and multilevel information encryption/decryption. We also demonstrate the use of the hand in complex signal generation systems and its potential application in sign language recognition, which shows a simplified recognition process with a high level of accuracy and robustness. The use of the human hand as the IR light source provides an alternative sustainable solution that will not only reduce the power used but also help move forward the effort in the integration of human components into functional systems to increase the level of intelligence and achieve ultimate control of these systems.


Assuntos
Mãos/fisiologia , Raios Infravermelhos , Interface Usuário-Computador , Segurança Computacional , Humanos , Tecnologia da Informação
11.
Nano Lett ; 23(1): 259-266, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542060

RESUMO

Films with micro/nanostructures that show high wicking performance are promising in water desalination, atmospheric water harvesting, and thermal energy management systems. Here, we use a facile bubble-induced self-assembly method to directly generate films with a nanoengineered crack-like surface on the substrate during bubble growth when self-dispersible graphene quantum dot (GQD) nanofluid is used as the working medium. The crack-like micro/nanostructure, which is generated due to the thermal stress, enables the GQD film to not only have superior capillary wicking performance but also provide many additional nucleation sites. The film demonstrates enhanced phase change-based heat transfer performance, with a simultaneous enhancement of the critical heat flux and heat transfer coefficient up to 169% and 135% over a smooth substrate, respectively. Additionally, the GQD film with high stability enables a performance improvement in the concentration ratio and electrical efficiency of concentrated photovoltaics in an analytical study, which is promising for high-power thermal energy management applications.

12.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338646

RESUMO

Chinese cabbage is the most widely consumed vegetable crop due to its high nutritional value and rock-bottom price. Notably, the presence of the physiological disease petiole spot significantly impacts the appearance quality and marketability of Chinese cabbage. It is well known that excessive nitrogen fertilizer is a crucial factor in the occurrence of petiole spots; however, the mechanism by which excessive nitrogen triggers the formation of petiole spots is not yet clear. In this study, we found that petiole spots initially gather in the intercellular or extracellular regions, then gradually extend into intracellular regions, and finally affect adjacent cells, accompanied by cell death. Transcriptomic and proteomic as well as physiology analyses revealed that the genes/proteins involved in nitrogen metabolism exhibited different expression patterns in resistant and susceptible Chinese cabbage lines. The resistant Chinese cabbage line has high assimilation ability of NH4+, whereas the susceptible one accumulates excessive NH4+, thus inducing a burst of reactive oxygen species (ROS). These results introduce a novel perspective to the investigation of petiole spot induced by the nitrogen metabolism pathway, offering a theoretical foundation for the development of resistant strains in the control of petiole spot.


Assuntos
Brassica , Proteômica , Perfilação da Expressão Gênica , Transcriptoma , Brassica/metabolismo , Nitrogênio/metabolismo
13.
J Comput Chem ; 44(28): 2223-2229, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37561047

RESUMO

Allostery plays a crucial role in regulating protein activity, making it a highly sought-after target in drug development. One of the major challenges in allosteric drug research is the identification of allosteric sites. In recent years, many computational models have been developed for accurate allosteric site prediction. Most of these models focus on designing a general rule that can be applied to pockets of proteins from various families. In this study, we present a new approach using the concept of Learning to Rank (LTR). The LTR model ranks pockets based on their relevance to allosteric sites, that is, how well a pocket meets the characteristics of known allosteric sites. After the training and validation on two datasets, the Allosteric Database (ASD) and CASBench, the LTR model was able to rank an allosteric pocket in the top three positions for 83.6% and 80.5% of test proteins, respectively. The model outperforms other common machine learning models with higher F1 scores (0.662 in ASD and 0.608 in CASBench) and Matthews correlation coefficients (0.645 in ASD and 0.589 in CASBench). The trained model is available on the PASSer platform (https://passer.smu.edu) to aid in drug discovery research.


Assuntos
Descoberta de Drogas , Proteínas , Humanos , Sítio Alostérico , Proteínas/metabolismo , Aprendizado de Máquina
14.
Inorg Chem ; 62(3): 1202-1209, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36622043

RESUMO

The excited-state manipulation of the phosphorescent iridium(III) complexes plays a vital role in their photofunctional applications. The development of the molecular design strategy promotes the creative findings of novel iridium(III) complexes. The current molecular design strategies for iridium(III) complexes mainly depend on the selective cyclometalation of the ligands with the iridium(III) ion, which is governed by the steric hindrance of the ligand during the cyclometalation. Herein, a new molecular design strategy (i.e., random cyclometalation strategy) is proposed for the effective excited-state manipulation of phosphorescent cyclometalated iridium(III) complexes. Two series of new and separable methoxyl-functionalized isomeric iridium(III) complexes are accessed by a one-pot synthesis via random cyclometalation, resulting in a dramatic tuning of the phosphorescence peak wavelength (∼57 nm) and electrochemical properties attributed to the high sensitivity of their excited states to the position of the methoxyl group. These iridium(III) complexes show intense phosphorescence ranging from the yellow (567 nm) to the deep-red (634 nm) color with high photoluminescence quantum yields of up to 0.99. Two deep-red emissive iridium(III) complexes with short decay lifetimes are further utilized as triplet emitters to afford efficient solution-processed electroluminescence with reduced efficiency roll-offs.

15.
J Chem Inf Model ; 63(5): 1413-1428, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36827465

RESUMO

Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Simulação de Dinâmica Molecular , SARS-CoV-2/metabolismo , Proteínas/química , Regulação Alostérica
16.
J Chem Inf Model ; 63(16): 5272-5296, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37549201

RESUMO

The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, microsecond molecular dynamics simulations, and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the functional conformational states and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant, which can be contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of the conformational states. The results suggested that variant-specific changes of the conformational mobility in the functional interfacial loops of the receptor-binding domain in the SARS-CoV-2 spike protein can be fine-tuned through crosstalk between convergent mutations which could provide an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulation of conformational plasticity and regulation of allosteric communications. This study also revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Comunicação , Mutação
17.
J Chem Inf Model ; 63(1): 67-75, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36472885

RESUMO

Molecular dynamics (MD) simulation is widely used to study protein conformations and dynamics. However, conventional simulation suffers from being trapped in some local energy minima that are hard to escape. Thus, most of the computational time is spent sampling in the already visited regions. This leads to an inefficient sampling process and further hinders the exploration of protein movements in affordable simulation time. The advancement of deep learning provides new opportunities for protein sampling. Variational autoencoders are a class of deep learning models to learn a low-dimensional representation (referred to as the latent space) that can capture the key features of the input data. Based on this characteristic, we proposed a new adaptive sampling method, latent space-assisted adaptive sampling for protein trajectories (LAST), to accelerate the exploration of protein conformational space. This method comprises cycles of (i) variational autoencoder training, (ii) seed structure selection on the latent space, and (iii) conformational sampling through additional MD simulations. The proposed approach is validated through the sampling of four structures of two protein systems: two metastable states of Escherichia coli adenosine kinase (ADK) and two native states of Vivid (VVD). In all four conformations, seed structures were shown to lie on the boundary of conformation distributions. Moreover, large conformational changes were observed in a shorter simulation time when compared with structural dissimilarity sampling (SDS) and conventional MD (cMD) simulations in both systems. In metastable ADK simulations, LAST explored two transition paths toward two stable states, while SDS explored only one and cMD neither. In VVD light state simulations, LAST was three times faster than cMD simulation with a similar conformational space. Overall, LAST is comparable to SDS and is a promising tool in adaptive sampling. The LAST method is publicly available at https://github.com/smu-tao-group/LAST to facilitate related research.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Proteínas/química , Conformação Proteica , Dobramento de Proteína
18.
Phys Chem Chem Phys ; 25(2): 1349-1362, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537692

RESUMO

Resistance to carbapenem ß-lactams presents major clinical and economical challenges for the treatment of pathogen infections. The fast hydrolysis of carbapenems by carbapenemase-producing bacterial strains enables the effective deactivation of carbapenem antibiotics. In this study, we aim to unravel the structural features that distinguish the notable deacylation activity of carbapenemases. The deacylation reactions between imipenem (IPM) and the KPC-2 class A serine-based ß-lactamases (ASßLs) are modeled with combined quantum mechanical/molecular mechanical (QM/MM) minimum energy pathway (MEP) calculations and interpretable machine-learning (ML) methods. We first applied a dual-level computational protocol to achieve fast sampling of QM/MM MEPs. A tree-based ensemble ML model was employed to learn the MEP activation barriers from the conformational features of the KPC-2/IPM active site. The barrier-predicting model was then unboxed using the Shapley additive explanation (SHAP) importance attribution methods to derive mechanistic insights, which were also verified by additional QM/MM wavefunction analysis. Essentially, we show that potential hydrogen bonding interactions of the general base and the tautomerization states of the carbapenem pyrroline ring could concertedly regulate the activation barrier of KPC-2/IPM deacylation. Nonetheless, we demonstrate the efficacy of interpretable ML to assist the analysis of QM/MM simulation data for robust extraction of human-interpretable mechanistic insights.


Assuntos
Proteínas de Bactérias , Carbapenêmicos , Humanos , Carbapenêmicos/metabolismo , Proteínas de Bactérias/química , beta-Lactamases/química , Imipenem , Antibacterianos , Testes de Sensibilidade Microbiana
19.
Phys Chem Chem Phys ; 25(32): 21245-21266, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37548589

RESUMO

In this study, we systematically examine the conformational dynamics, binding and allosteric communications in the Omicron BA.1, BA.2, BA.3 and BA.4/BA.5 spike protein complexes with the ACE2 host receptor using molecular dynamics simulations and perturbation-based network profiling approaches. Microsecond atomistic simulations provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the BA.2 variant which can be contrasted with the BA.4/BA.5 variants inducing a significant mobility of the complexes. Using the dynamics-based mutational scanning of spike residues, we identified structural stability and binding affinity hotspots in the Omicron complexes. Perturbation response scanning and network-based mutational profiling approaches probed the effect of the Omicron mutations on allosteric interactions and communications in the complexes. The results of this analysis revealed specific roles of Omicron mutations as conformationally plastic and evolutionary adaptable modulators of binding and allostery which are coupled to the major regulatory positions through interaction networks. Through perturbation network scanning of allosteric residue potentials in the Omicron variant complexes performed in the background of the original strain, we characterized regions of epistatic couplings that are centered around the binding affinity hotspots N501Y and Q498R. Our results dissected the vital role of these epistatic centers in regulating protein stability, efficient ACE2 binding and allostery which allows for accumulation of multiple Omicron immune escape mutations at other sites. Through integrative computational approaches, this study provides a systematic analysis of the effects of Omicron mutations on thermodynamics, binding and allosteric signaling in the complexes with ACE2 receptor.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Mutação
20.
Mol Divers ; 27(4): 1661-1674, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36048303

RESUMO

Overexpression of Forkhead box protein C2 (FOXC2) has been associated with different types of carcinomas. FOXC2 plays an important role in the initiation and maintenance of the epithelial-mesenchymal transition (EMT) process, which is essential for the development of higher-grade tumors with an enhanced ability for metastasis. Thus, FOXC2 has become a therapeutic target for the development of anticancer drugs. MC-1-F2, the only identified experimental inhibitor of FOXC2, interacts with the full length of FOXC2. However, only the DNA-binding domain (DBD) of FOXC2 has resolved crystal structure. In this work, a three-dimensional (3D) structure of the full-length FOXC2 using homology modeling was developed and used for structure-based drug design (SBDD). The quality of this 3D model of the full-length FOXC2 was evaluated using MolProbity, ERRAT, and ProSA modules. Molecular dynamics (MD) simulation was also carried out to verify its stability. Ligand-based drug design (LBDD) was carried out to identify similar analogues for MC-1-F2 against 15 million compounds from ChEMBL and ZINC databases. 792 molecules were retrieved from this similarity search. De novo SBDD was performed against the full-length 3D structure of FOXC2 through homology modeling to identify novel inhibitors. The combination of LBDD and SBDD helped in gaining a better insight into the binding of MC-1-F2 and its analogues against the full length of the FOXC2. The binding free energy of the top hits was further investigated using MD simulations and MM/GBSA calculations to result in eight promising hits as lead compounds targeting FOXC2.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Ligantes , Antineoplásicos/farmacologia , Fatores de Transcrição Forkhead/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA