Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912660

RESUMO

Development of an accurate, rapid, and cost-effective portable device is in high demand for point-of-care molecular diagnosis toward disease screening. Here we report a one-pot homogeneous isothermal assay that leverages nicking endonuclease and minimum secondary structured rolling circle amplification (N-MSSRCA) for fast and sensitive quantification of nucleic acids on distance microfluidic paper-based analytical devices (dµPAD) by a portable custom-made fluorescence detector. Human papillomavirus (HPV) oncogenic E7 mRNA as the biomarker for cervical cancer was used as the model analyte. N-MSSRCA integrates ligase for target recognition, the nicking enzyme for primer generation, and the dual function of the Phi29 DNA polymerase for both on- and off-loop amplification. The proposed method was capable of detecting 1 and 10 fM of the analyte using the microplate reader and portable detector with dµPAD, respectively, with ∼1 h assay time. A cohort study of 40 cervical swab samples shows N-MSSRCA reached positive and negative predictive values of 87.5% and 93.5% using the portable detector with dµPAD, compared to 91.67% and 100% using the microplate reader. N-MSSRCA demonstrates potential in early screening of high-risk HPV infection as a generic strategy to detect various nucleic acids in point-of-care scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA