Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Transl Med ; 21(1): 461, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434177

RESUMO

BACKGROUND: Nearly 80% of patients with pancreatic cancer suffer from glucose intolerance or diabetes. Pancreatic cancer complicated by diabetes has a more immunosuppressive tumor microenvironment (TME) and is associated with a worse prognosis. The relationship between glucose metabolism and programmed cell death-Ligand 1 (PD-L1) is close and complex. It is important to explore the regulation of high glucose on PD-L1 expression in pancreatic cancer and its effect on infiltrating immune effectors in the tumor microenvironment. METHODS: Diabetic murine models (C57BL/6) were used to reveal different immune landscape in euglycemic and hyperglycemic pancreatic tumor microenvironment. Bioinformatics, WB, iRIP [Improved RNA Binding Protein (RBP) Immunoprecipitation]-seq were used to confirm the potential regulating role of peptidyl-tRNA hydrolase 1 homolog (PTRH1) on the stability of the PD-L1 mRNA. Postoperative specimens were used to identify the expression of PD-L1 and PTRH1 in pancreatic cancer. Co-culturing T cells with pancreatic cancer cells to explore the immunosuppressive effect of pancreatic tumor cells. RESULTS: Our results revealed that a high dose of glucose enhanced the stability of the PD-L1 mRNA in pancreatic tumor cells by downregulating PTRH1 through RAS signaling pathway activation following epidermal growth factor receptor (EGFR) stimulation. PTRH1 overexpression significantly suppressed PD-L1 expression in pancreatic cells and improved the proportion and cytotoxic function of CD8+ T cells in the pancreatic TME of diabetic mice. CONCLUSIONS: PTRH1, an RBP, plays a key role in the regulation of PD-L1 by high glucose and is closely related to anti-tumor immunity in the pancreatic TME.


Assuntos
Antineoplásicos , Antígeno B7-H1 , Diabetes Mellitus Experimental , Neoplasias Pancreáticas , Animais , Camundongos , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Regulação para Baixo/genética , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Transdução de Sinais , Microambiente Tumoral , Neoplasias Pancreáticas
3.
MedComm (2020) ; 4(5): e392, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37808270

RESUMO

Tissue-type plasminogen activator (tPA) encoded by PLAT is a major mediator that promotes fibrinolysis and prevents thrombosis. Pathogenetic mutations in PLAT associated with venous thromboembolism have rarely been reported. Here, we report the first case of a homozygous point mutation c.1411T>C (p.Y471H) in PLAT leading to thromboembolic events and conduct related functional studies. The corresponding tPA mutant protein (tPA-Y471H) and wild-type tPA (tPA-WT) were synthesized in vitro, and mutant mice (PLATH/H mice) were constructed. The molecular docking and surface plasmon resonance results indicated that the mutation impeded the hydrogen-bonding interactions between the protease domain of tPA and the kringle 4 domain of plasminogen, and the binding affinity of tPA and plasminogen was significantly reduced with a difference of one order of magnitude. mRNA half-life assay showed that the half-life of tPA-Y471H was shortened. The inferior vena cava thrombosis model showed that the rate of venous thrombosis in PLATH/H mice was 80% compared with 53% in wild-type mice. Our data suggested a novel role for the protease domain of tPA in efficient plasminogen activation, and demonstrated that this tPA mutation could reduce the fibrinolysis function of the body and lead to an increased propensity for thrombosis.

4.
Sci Transl Med ; 14(673): eabq3202, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449603

RESUMO

Hereditary antithrombin deficiency is caused by SERPINC1 gene mutations and predisposes to recurrent venous thromboembolism that can be life-threatening. Therefore, lifelong anticoagulation is required, which has side effects and may not be effective. In this study, peripheral blood mononuclear cells from a patient with severe antithrombin deficiency were reprogrammed into induced pluripotent stem cells (iPSCs). The mutation was corrected using CRISPR-Cas9 and Cre/LoxP genome editing. iPSCs were differentiated into hepatocytes, which were injected into the spleen of antithrombin knockout mice to restore the activity of antithrombin and reduce the thrombophilic state. Human iPSC-differentiated hepatocytes colonized mice and secreted antithrombin stably, normalizing antithrombin in plasma (activity: from 46.8 ± 5.7% to 88.6 ± 7.6%, P < 0.0001; antigen: from 146.9 ± 19.5 nanograms per milliliter to 390.7 ± 16.1 nanograms per milliliter, P < 0.0001). In venous thrombosis model, the rate of thrombosis in mice treated with edited hepatocytes, parental hepatocytes, and wild-type mice were 60, 90, and 70%, respectively. The thrombus weight was much lighter in mice treated with edited hepatocytes compared with parental hepatocytes (7.25 ± 2.00 milligrams versus 15.32 ± 2.87 milligrams, P = 0.0025) and showed no notable difference compared with that in wild-type mice (10.41 ± 2.91 milligrams). The activity and concentration of antithrombin remained high for 3 weeks after injection. The liver and kidney function markers showed no obvious abnormality during the observation period. This study provides a proof of principle for correction of mutations in patient-derived iPSCs and potential therapeutic applications for hereditary thrombophilia.


Assuntos
Deficiência de Antitrombina III , Células-Tronco Pluripotentes Induzidas , Trombofilia , Humanos , Camundongos , Animais , Edição de Genes , Leucócitos Mononucleares , Trombofilia/terapia , Antitrombinas/uso terapêutico , Anticoagulantes , Camundongos Knockout
5.
Genes (Basel) ; 12(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34680916

RESUMO

BACKGROUND: Congenital coagulation factor X (FX) deficiency is a rare bleeding disorder with an incidence of one in one million caused by mutations in the FX-coding gene(F10), leading to abnormal coagulation activity and a tendency for severe hemorrhage. Therefore, identifying mutations in FX is important for diagnosing congenital FX deficiency. RESULTS: Genetic analysis of the proband identified two single-base substitutions: c.794T > C: p.Ile265Thr and c.865 + 5G > A: IVS7 + 5G > A. His FX activity and antigen levels were < 1% and 49.7%, respectively; aPTT and PT were prolonged to 65.3 and 80.5 s, respectively. Bioinformatics analysis predicted the two novel variants to be pathogenic. In-vitro expression study of the missense mutation c.794T > C: p.Ile265Thr showed normal synthesis and secretion. Activation of FXs by RVV, FVII/TF, and FVIII/FIX all showed no obvious difference between the variant and the reference. However, clotting activity by PT and aPTT assays and activity of thrombin generation in a TGA assay all indicated reduced activity of the mutant FX-Ile265Thr compared to FX-WT. Minigene assay showed a normal splicing mode c.865 + 5G > A: IVS7 + 5G > A, which is inconsistent with clinical phenotype. CONCLUSIONS: The heterozygous variants c.794T > C: p.Ile265Thr or c.865 + 5G > A: IVS7 + 5G > A indicate mild FX deficiency, but the compound heterozygous mutation of the two causes severe congenital FX deficiency. Genetic analysis of these two mutations may help characterize the bleeding tendency and confirm congenital FX deficiency. In-vitro expression and functional study showed that the low activity of the mutant FX-Ile265Thr is caused by decrease in its enzyme activity rather than self-activation. The minigene assay help us explore possible mechanisms of the splicing mutation. However, more in-depth mechanism research is needed in the future.


Assuntos
Fator X/genética , Heterozigoto , Mutação de Sentido Incorreto , Splicing de RNA , Domínio Catalítico , China , Feminino , Humanos , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA