Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(15): 10991-10997, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37016939

RESUMO

The discovery of two-dimensional (2D) magnetic materials makes it possible to realize in-plane magnetic tunnel junctions. In this study, the transport characteristics of an in-plane double barrier magnetic tunnel junction (IDB-MTJ) based on Cr2C have been studied by density functional theory combined with the nonequilibrium Green's function method. The results showed its maximum tunneling magnetoresistance ratio (TMR) value reached 6.58 × 1010. Its minimum TMR value (3.86 × 106) was also comparable to those of conventional field effect transistors (FETs). Due to its giant TMR and unique structural characteristics, the IDB-MTJ based on Cr2C has great potential applications in magnetic random access memory (MRAM) and logic computing.

2.
Phys Chem Chem Phys ; 24(5): 3451-3459, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076037

RESUMO

Magnetic tunnel junctions (MTJs) have attained new opportunities due to the emergence of two-dimensional (2D) magnetic materials after they were proposed more than forty years ago. Here, an in-plane double barrier magnetic tunnel junction (IDB-MTJ) based on B vacancy h-NB nanoribbons has been proposed firstly, and the transport properties have been studied using density functional theory combined with the nonequilibrium Green's function method. Due to its unique structural characteristics, the tunneling magnetoresistance (TMR) ratio can be tuned and the maximum TMR can reach 1.86 × 105. The potential applications of the IDB-MTJ in magnetic random-access memories and logical computation have also been discussed. We find that the IDB-MTJs have great potential in magnetic random-access memories and logical computation applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA