Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Exp Bot ; 73(15): 5322-5335, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35383379

RESUMO

High-throughput phenotyping is an emerging approach in plant science, but thus far only a few applications have been made in horticultural crop breeding. Remote sensing of leaf or canopy spectral reflectance can help breeders rapidly measure traits, increase selection accuracy, and thereby improve response to selection. In the present study, we evaluated the integration of spectral analysis of canopy reflectance and genomic information for the prediction of strawberry (Fragaria × ananassa) powdery mildew disease. Two multi-parental breeding populations of strawberry comprising a total of 340 and 464 pedigree-connected seedlings were evaluated in two separate seasons. A single-trait Bayesian prediction method using 1001 spectral wavebands in the ultraviolet-visible-near infrared region (350-1350 nm wavelength) combined with 8552 single nucleotide polymorphism markers showed up to 2-fold increase in predictive ability over models using markers alone. The integration of high-throughput phenotyping was further validated independently across years/trials with improved response to selection of up to 90%. We also conducted Bayesian multi-trait analysis using the estimated vegetative indices as secondary traits. Three vegetative indices (Datt3, REP_Li, and Vogelmann2) had high genetic correlations (rA) with powdery mildew visual ratings with average rA values of 0.76, 0.71, and 0.71, respectively. Increasing training population sizes by incorporating individuals with only vegetative index information yielded substantial increases in predictive ability. These results strongly indicate the use of vegetative indices as secondary traits for indirect selection. Overall, combining spectrometry and genome-wide prediction improved selection accuracy and response to selection for powdery mildew resistance, demonstrating the power of an integrated phenomics-genomics approach in strawberry breeding.


Assuntos
Fragaria , Teorema de Bayes , Fragaria/genética , Fenótipo , Melhoramento Vegetal , Análise Espectral
2.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796695

RESUMO

The indiscriminate use of nitrogenous fertilizers continues unabated for commercial crop production, resulting in air and water pollution. The development of rice varieties with enhanced nitrogen use efficiency (NUE) will require a thorough understanding of the molecular basis of a plant's response to low nitrogen (N) availability. The global expression profiles of root tissues collected from low and high N treatments at different time points in two rice genotypes, Pokkali and Bengal, with contrasting responses to N stress and contrasting root architectures were examined. Overall, the number of differentially expressed genes (DEGs) in Pokkali (indica) was higher than in Bengal (japonica) during low N and early N recovery treatments. Most low N DEGs in both genotypes were downregulated whereas early N recovery DEGs were upregulated. Of these, 148 Pokkali-specific DEGs might contribute to Pokkali's advantage under N stress. These DEGs included transcription factors and transporters and were involved in stress responses, growth and development, regulation, and metabolism. Many DEGs are co-localized with quantitative trait loci (QTL) related to root growth and development, chlorate-resistance, and NUE. Our findings suggest that the superior growth performance of Pokkali under low N conditions could be due to the genetic differences in a diverse set of genes influencing N uptake through the regulation of root architecture.


Assuntos
Nitrogênio/metabolismo , Oryza/genética , Oryza/fisiologia , Raízes de Plantas/fisiologia , Estresse Fisiológico/genética , Transcriptoma/genética , Processamento Alternativo/genética , Biomassa , Cloratos/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes Controladores do Desenvolvimento , Genótipo , Anotação de Sequência Molecular , Oryza/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Locos de Características Quantitativas/genética , Transdução de Sinais/genética , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/metabolismo
3.
Plant Cell Physiol ; 57(5): 919-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26903527

RESUMO

The glycine decarboxylase complex (GDC) plays a critical role in the photorespiratory C2 cycle of C3 species by recovering carbon following the oxygenation reaction of ribulose-1,5-bisphosphate carboxylase/oxygenase. Loss of GDC from mesophyll cells (MCs) is considered a key early step in the evolution of C4 photosynthesis. To assess the impact of preferentially reducing GDC in rice MCs, we decreased the abundance of OsGDCH (Os10g37180) using an artificial microRNA (amiRNA) driven by a promoter that preferentially drives expression in MCs. GDC H- and P-proteins were undetectable in leaves of gdch lines. Plants exhibited a photorespiratory-deficient phenotype with stunted growth, accelerated leaf senescence, reduced chlorophyll, soluble protein and sugars, and increased glycine accumulation in leaves. Gas exchange measurements indicated an impaired ability to regenerate ribulose 1,5-bisphosphate in photorespiratory conditions. In addition, MCs of gdch lines exhibited a significant reduction in chloroplast area and coverage of the cell wall when grown in air, traits that occur during the later stages of C4 evolution. The presence of these two traits important for C4 photosynthesis and the non-lethal, down-regulation of the photorespiratory C2 cycle positively contribute to efforts to produce a C4 rice prototype.


Assuntos
Regulação da Expressão Gênica de Plantas , Complexo Glicina Descarboxilase/metabolismo , Oryza/genética , Fotossíntese , Ciclo do Carbono , Respiração Celular , Cloroplastos/metabolismo , Técnicas de Silenciamento de Genes , Complexo Glicina Descarboxilase/genética , Luz , MicroRNAs/genética , Oryza/enzimologia , Oryza/fisiologia , Oryza/efeitos da radiação , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
4.
Hortic Res ; 8(1): 153, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34193853

RESUMO

Powdery mildew (PM) caused by Podosphaera aphanis is a major fungal disease of cultivated strawberry. Mildew Resistance Locus O (MLO) is a gene family described for having conserved seven-transmembrane domains. Induced loss-of-function in specific MLO genes can confer durable and broad resistance against PM pathogens. However, the genomic structure and potential role of MLO genes for PM resistance have not been characterized yet in the octoploid cultivated strawberry. In the present study, MLO gene families were characterized in four diploid progenitor species (Fragaria vesca, F. iinumae, F. viridis, and F. nipponica) and octoploid cultivated (Fragaria ×ananassa) strawberry, and potential sources of MLO-mediated susceptibility were identified. Twenty MLO sequences were identified in F. vesca and 68 identified in F. ×ananassa. Phylogenetic analysis divided diploid and octoploid strawberry MLO genes into eight different clades, in which three FveMLO (MLO10, MLO17, and MLO20) and their twelve orthologs of FaMLO were grouped together with functionally characterized MLO genes conferring PM susceptibility. Copy number variations revealed differences in MLO composition among homoeologous chromosomes, supporting the distinct origin of each subgenome during the evolution of octoploid strawberry. Dissecting genomic sequence and structural variations in candidate FaMLO genes revealed their potential role associated with genetic controls and functionality in strawberry against PM pathogen. Furthermore, the gene expression profiling and RNAi silencing of putative FaMLO genes in response to the pathogen indicate the function in PM resistance. These results are a critical first step in understanding the function of strawberry MLO genes and will facilitate further genetic studies of PM resistance in cultivated strawberry.

5.
J Plant Physiol ; 260: 153395, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33684805

RESUMO

We generated antisense constructs targeting two of the five Rubisco small subunit genes (OsRBCS2 and 4) which account for between 30-40 % of the RBCS transcript abundance in leaf blades. The constructs were driven by a maize phosphoenolpyruvate carboxylase (PEPC) promoter known to have enriched expression in mesophyll cells (MCs). In the resulting lines leaf, Rubisco protein content was reduced by between 30-50 % and CO2 assimilation rate was limited under photorespiratory and non-photorespiratory conditions. A relationship between Rubisco protein content and CO2 assimilation rate was found. This was associated with a significant reduction in dry biomass accumulation and grain yield of between 37-70%. In addition to serving as a resource for reducing Rubisco accumulation in a cell-preferential manner, these lines allow us to characterize gene function and isoform specific suppression on photosynthesis and growth. Our results suggest that the knockdown of multiple genes is required to completely reduce Rubisco accumulation in MCs.


Assuntos
Células do Mesofilo/metabolismo , Oryza/genética , Fotossíntese , Ribulose-Bifosfato Carboxilase/genética , Técnicas de Silenciamento de Genes , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Sci Rep ; 8(1): 2081, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391460

RESUMO

Although flowering in rice has been extensively investigated, few studies focused on genetic interactions. Flowering evaluation of two recombinant inbred line (RIL) populations involving photo-insensitive rice cultivars, Bengal and Cypress, and a weedy rice accession, PSRR-1, under natural long-day (LD) conditions, revealed six to ten quantitative trait loci (QTLs) and a major QTL interaction. In addition to the validation of several previously cloned genes using an introgression lines (IL) population of PSRR-1, a few novel QTLs were also discovered. Analysis of the marker profiles of the advanced backcross lines revealed that Hd1 allele of PSRR-1 was responsible for the photoperiodic response in the near-isogenic lines (NILs) developed in both cultivar backgrounds. Based on the phenotypic and genotypic data of the NILs, and NIL mapping population and the transcript abundance of key flowering pathway genes, we conclude that Hd1 and its interaction with a novel gene other than Ghd7 play an important role in controlling flowering under LD conditions. Our study demonstrates the important role of genetic interaction that regulates flowering time in rice and the need for further investigation to exploit it for breeding adaptable rice varieties.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Fotoperíodo , Regulação da Expressão Gênica no Desenvolvimento , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Locos de Características Quantitativas , Fatores de Transcrição/genética
7.
Curr Biol ; 27(21): 3278-3287.e6, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29056456

RESUMO

The C4 photosynthetic pathway accounts for ∼25% of primary productivity on the planet despite being used by only 3% of species. Because C4 plants are higher yielding than C3 plants, efforts are underway to introduce the C4 pathway into the C3 crop rice. This is an ambitious endeavor; however, the C4 pathway evolved from C3 on multiple independent occasions over the last 30 million years, and steps along the trajectory are evident in extant species. One approach toward engineering C4 rice is to recapitulate this trajectory, one of the first steps of which was a change in leaf anatomy. The transition from C3 to so-called "proto-Kranz" anatomy requires an increase in organelle volume in sheath cells surrounding leaf veins. Here we induced chloroplast and mitochondrial development in rice vascular sheath cells through constitutive expression of maize GOLDEN2-LIKE genes. Increased organelle volume was accompanied by the accumulation of photosynthetic enzymes and by increased intercellular connections. This suite of traits reflects that seen in "proto-Kranz" species, and, as such, a key step toward engineering C4 rice has been achieved.


Assuntos
Cloroplastos/genética , Oryza/genética , Fotossíntese/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Zea mays/genética , Evolução Biológica , Cloroplastos/fisiologia , Mitocôndrias/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA