Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Comput Biol ; 7(9): e1002174, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21980273

RESUMO

Heterogeneity in host populations is an important factor affecting the ability of a pathogen to invade, yet the quantitative investigation of its effects on epidemic spread is still an open problem. In this paper, we test recent theoretical results, which extend the established "percolation paradigm" to the spread of a pathogen in discrete heterogeneous host populations. In particular, we test the hypothesis that the probability of epidemic invasion decreases when host heterogeneity is increased. We use replicated experimental microcosms, in which the ubiquitous pathogenic fungus Rhizoctonia solani grows through a population of discrete nutrient sites on a lattice, with nutrient sites representing hosts. The degree of host heterogeneity within different populations is adjusted by changing the proportion and the nutrient concentration of nutrient sites. The experimental data are analysed via Bayesian inference methods, estimating pathogen transmission parameters for each individual population. We find a significant, negative correlation between heterogeneity and the probability of pathogen invasion, thereby validating the theory. The value of the correlation is also in remarkably good agreement with the theoretical predictions. We briefly discuss how our results can be exploited in the design and implementation of disease control strategies.


Assuntos
Simulação por Computador , Epidemias/estatística & dados numéricos , Modelos Biológicos , Animais , Teorema de Bayes , Controle de Doenças Transmissíveis , Biologia Computacional , Transmissão de Doença Infecciosa , Interações Hospedeiro-Patógeno , Humanos
2.
Phys Rev Lett ; 106(21): 218701, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699346

RESUMO

An epidemiological model which incorporates synergistic effects that allow the infectivity and/or susceptibility of hosts to be dependent on the number of infected neighbors is proposed. Constructive synergy induces an exploitative behavior which results in a rapid invasion that infects a large number of hosts. Interfering synergy leads to a slower and sparser explorative foraging strategy that traverses larger distances by infecting fewer hosts. The model can be mapped to a dynamical bond percolation with spatial correlations that affect the mechanism of spread but do not influence the critical behavior of epidemics.


Assuntos
Doenças Transmissíveis/transmissão , Modelos Teóricos , Doenças Transmissíveis/epidemiologia , Epidemias
3.
Sci Rep ; 7(1): 2242, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28533539

RESUMO

The jump-walking Monte-Carlo algorithm is revisited and updated to study the equilibrium properties of systems exhibiting quasi-nonergodicity. It is designed for a single processing thread as opposed to currently predominant algorithms for large parallel processing systems. The updated algorithm is tested on the Ising model and applied to the lattice-gas model for sorption in aerogel at low temperatures, when dynamics of the system is critically slowed down. It is demonstrated that the updated jump-walking simulations are able to produce equilibrium isotherms which are typically hidden by the hysteresis effect characteristic of the standard single-flip simulations.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26764751

RESUMO

Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25122288

RESUMO

The lattice gas model of condensation in a heterogeneous pore system, represented by a random graph of cells, is studied using an exact analytical solution. A binary mixture of pore cells with different coordination numbers is shown to exhibit two phase transitions as a function of chemical potential in a certain temperature range. Heterogeneity in interaction strengths is demonstrated to reduce the critical temperature and, for large-enough degreeS of disorder, divides the cells into ones which are either on average occupied or unoccupied. Despite treating the pore space loops in a simplified manner, the random-graph model provides a good description of condensation in porous structures containing loops. This is illustrated by considering capillary condensation in a structural model of mesoporous silica SBA-15.


Assuntos
Gráficos por Computador , Gases/química , Modelos Moleculares , Transição de Fase , Porosidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-24483519

RESUMO

A theoretical framework for the description of susceptible-infected-removed (SIR) spreading processes with synergistic transmission of infection on a lattice is developed. The model incorporates explicitly the effects of time-dependence of the state of the hosts in the neighborhood of transmission events. Exact solution of the model shows that time-dependence of the state of nearest neighbors of recipient hosts is a key factor for synergistic spreading processes. It is demonstrated that the higher the connectivity of a lattice, the more prominent is the effect of synergy on spread.

7.
Artigo em Inglês | MEDLINE | ID: mdl-24032785

RESUMO

The zero-temperature random-field Ising model is solved analytically for magnetization versus external field for a bilayered Bethe lattice. The mechanisms of infinite avalanches which are observed for small values of disorder are established. The effects of variable interlayer interaction strengths on infinite avalanches are investigated. The spin-field correlation length is calculated and its critical behavior is discussed. Direct Monte Carlo simulations of spin-flip dynamics are shown to support the analytical findings. We find, paradoxically, that a reduction of the interlayer bond strength can cause a phase transition from a regime with continuous magnetization reversal to a regime where magnetization exhibits a discontinuity associated with an infinite avalanche. This effect is understood in terms of the proposed mechanisms for the infinite avalanche.

8.
Artigo em Inglês | MEDLINE | ID: mdl-23944446

RESUMO

A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.

9.
Artigo em Inglês | MEDLINE | ID: mdl-23848642

RESUMO

A mapping of avalanches occurring in the zero-temperature random-field Ising model to life periods of a population experiencing immigration is established. Such a mapping allows the microscopic criteria for the occurrence of an infinite avalanche in a q-regular graph to be determined. A key factor for an avalanche of spin flips to become infinite is that it interacts in an optimal way with previously flipped spins. Based on these criteria, we explain why an infinite avalanche can occur in q-regular graphs only for q>3 and suggest that this criterion might be relevant for other systems. The generating function techniques developed for branching processes are applied to obtain analytical expressions for the durations, pulse shapes, and power spectra of the avalanches. The results show that only very long avalanches exhibit a significant degree of universality.

10.
J R Soc Interface ; 9(74): 2085-96, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22513723

RESUMO

Predictability of undesired events is a question of great interest in many scientific disciplines including seismology, economy and epidemiology. Here, we focus on the predictability of invasion of a broad class of epidemics caused by diseases that lead to permanent immunity of infected hosts after recovery or death. We approach the problem from the perspective of the science of complexity by proposing and testing several strategies for the estimation of important characteristics of epidemics, such as the probability of invasion. Our results suggest that parsimonious approximate methodologies may lead to the most reliable and robust predictions. The proposed methodologies are first applied to analysis of experimentally observed epidemics: invasion of the fungal plant pathogen Rhizoctonia solani in replicated host microcosms. We then consider numerical experiments of the susceptible-infected-removed model to investigate the performance of the proposed methods in further detail. The suggested framework can be used as a valuable tool for quick assessment of epidemic threat at the stage when epidemics only start developing. Moreover, our work amplifies the significance of the small-scale and finite-time microcosm realizations of epidemics revealing their predictive power.


Assuntos
Basidiomycota , Epidemias , Modelos Biológicos , Doenças das Plantas , Plantas/microbiologia
11.
Hear Res ; 282(1-2): 97-107, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21951489

RESUMO

The middle ears of seven species of rodents, including four hamster species, were examined under light microscopy and through micro-CT imaging. Hamsters were found to possess a spectrum of ossicular morphologies ranging from something approaching "freely mobile" (Mesocricetus) to something nearer the "microtype" (Cricetulus), although no hamster has an orbicular apophysis of the malleus. Rats, mice and Calomyscus were found to have typically microtype ossicles. To explore the functional effects of these morphological differences, CT scan data were used to calculate the magnitudes of the moments of inertia and positions of the centres of mass and principal rotational axes for the malleus-incus complexes. Microtype species were found to have much greater ossicular inertias, relative to size, about the "anatomical axis" extending between anterior process of the malleus and short process of the incus; ossicular centres of mass were displaced further from this axis. Calculated inertial values were then put into an existing model of middle ear function (Hemilä et al., 1995), in order to see whether the more accurate data would improve predictions of upper hearing limits. For the rat and mouse they did, but this was not so for the hamster Mesocricetus. This might indicate that the inner rather than the middle ear limits hearing in this species, or might simply reflect other shortcomings of the model. Functional differences appear to exist even among rodent ears of the same general type, but the adaptive significance of these differences remains enigmatic.


Assuntos
Ossículos da Orelha/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Simulação por Computador , Cricetinae , Ossículos da Orelha/anatomia & histologia , Ossículos da Orelha/diagnóstico por imagem , Mesocricetus , Camundongos , Modelos Anatômicos , Interpretação de Imagem Radiográfica Assistida por Computador , Ratos , Rotação , Especificidade da Espécie , Microtomografia por Raio-X
12.
J R Soc Interface ; 8(55): 201-9, 2011 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-20630880

RESUMO

The percolation paradigm is widely used in spatially explicit epidemic models where disease spreads between neighbouring hosts. It has been successful in identifying epidemic thresholds for invasion, separating non-invasive regimes, where the disease never invades the system, from invasive regimes where the probability of invasion is positive. However, its power is mainly limited to homogeneous systems. When heterogeneity (environmental stochasticity) is introduced, the value of the epidemic threshold is, in general, not predictable without numerical simulations. Here, we analyse the role of heterogeneity in a stochastic susceptible-infected-removed epidemic model on a two-dimensional lattice. In the homogeneous case, equivalent to bond percolation, the probability of invasion is controlled by a single parameter, the transmissibility of the pathogen between neighbouring hosts. In the heterogeneous model, the transmissibility becomes a random variable drawn from a probability distribution. We investigate how heterogeneity in transmissibility influences the value of the invasion threshold, and find that the resilience of the system to invasion can be suitably described by two control parameters, the mean and variance of the transmissibility. We analyse a two-dimensional phase diagram, where the threshold is represented by a phase boundary separating an invasive regime in the high-mean, low-variance region from a non-invasive regime in the low-mean, high-variance region of the parameter space. We thus show that the percolation paradigm can be extended to the heterogeneous case. Our results have practical implications for the analysis of disease control strategies in realistic heterogeneous epidemic systems.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Epidemias , Modelos Teóricos , Simulação por Computador , Processos Estocásticos
13.
Front Comput Neurosci ; 4: 150, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21160547

RESUMO

This article proposes the concept of neuromorphological space as the multidimensional space defined by a set of measurements of the morphology of a representative set of almost 6000 biological neurons available from the NeuroMorpho database. For the first time, we analyze such a large database in order to find the general distribution of the geometrical features. We resort to McGhee's biological shape space concept in order to formalize our analysis, allowing for comparison between the geometrically possible tree-like shapes, obtained by using a simple reference model, and real neuronal shapes. Two optimal types of projections, namely, principal component analysis and canonical analysis, are used in order to visualize the originally 20-D neuron distribution into 2-D morphological spaces. These projections allow the most important features to be identified. A data density analysis is also performed in the original 20-D feature space in order to corroborate the clustering structure. Several interesting results are reported, including the fact that real neurons occupy only a small region within the geometrically possible space and that two principal variables are enough to account for about half of the overall data variability. Most of the measurements have been found to be important in representing the morphological variability of the real neurons.

14.
J R Soc Interface ; 7(48): 1083-92, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20075039

RESUMO

One of the challenges in epidemiology is to account for the complex morphological structure of hosts such as plant roots, crop fields, farms, cells, animal habitats and social networks, when the transmission of infection occurs between contiguous hosts. Morphological complexity brings an inherent heterogeneity in populations and affects the dynamics of pathogen spread in such systems. We have analysed the influence of realistically complex host morphology on the threshold for invasion and epidemic outbreak in an SIR (susceptible-infected-recovered) epidemiological model. We show that disorder expressed in the host morphology and anisotropy reduces the probability of epidemic outbreak and thus makes the system more resistant to epidemic outbreaks. We obtain general analytical estimates for minimally safe bounds for an invasion threshold and then illustrate their validity by considering an example of host data for branching hosts (salamander retinal ganglion cells). Several spatial arrangements of hosts with different degrees of heterogeneity have been considered in order to separately analyse the role of shape complexity and anisotropy in the host population. The estimates for invasion threshold are linked to morphological characteristics of the hosts that can be used for determining the threshold for invasion in practical applications.


Assuntos
Produtos Agrícolas/genética , Surtos de Doenças , Anisotropia , Suscetibilidade a Doenças , Ecossistema
15.
Naturwissenschaften ; 94(6): 505-10, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17252238

RESUMO

The existence of sex is one of the major unsolved problems in biology. We use computer simulations to model conditions in which sex may first become established. We develop an individual-based population model and show that a hypothetical facultative sex gene can fix, provided that the initial cost is low. It is demonstrated that the equilibrium fitness in the population increases with increasing population size and decreasing mutation rate. The probability of the establishment of the sex gene is found not to be directly related to the fitness difference between the asexual and sexual populations. This change in fitness on changing the parameters of the model is investigated.


Assuntos
Comportamento Sexual , Animais , Evolução Biológica , Simulação por Computador , Feminino , Humanos , Masculino , Mutação , Probabilidade , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA