Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genome Res ; 33(6): 957-971, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414574

RESUMO

In this paper, we developed a highly sensitive approach to detect interchromosomal rearrangements in cattle by searching for abnormal linkage disequilibrium patterns between markers located on different chromosomes in large paternal half-sib families genotyped as part of routine genomic evaluations. We screened 5571 families of artificial insemination sires from 15 breeds and revealed 13 putative interchromosomal rearrangements, 12 of which were validated by cytogenetic analysis and long-read sequencing. These consisted of one Robertsonian fusion, 10 reciprocal translocations, and the first case of insertional translocation reported in cattle. Taking advantage of the wealth of data available in cattle, we performed a series of complementary analyses to define the exact nature of these rearrangements, investigate their origins, and search for factors that may have favored their occurrence. We also evaluated the risks to the livestock industry and showed significant negative effects on several traits in the sires and in their balanced or aneuploid progeny compared with wild-type controls. Thus, we present the most comprehensive and thorough screen for interchromosomal rearrangements compatible with normal spermatogenesis in livestock species. This approach is readily applicable to any population that benefits from large genotype data sets, and will have direct applications in animal breeding. Finally, it also offers interesting prospects for basic research by allowing the detection of smaller and rarer types of chromosomal rearrangements than GTG banding, which are interesting models for studying gene regulation and the organization of genome structure.


Assuntos
Genoma , Translocação Genética , Bovinos/genética , Masculino , Animais , Genótipo , Fenótipo , Genômica
2.
Genet Sel Evol ; 52(1): 67, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167870

RESUMO

BACKGROUND: French beef producers suffer from the decrease in profitability of their farms mainly because of the continuous increase in feed costs. Selection for feed efficiency in beef cattle represents a relevant solution to face this problem. However, feed efficiency is a complex trait that can be assessed by three major criteria: residual feed intake (RFI), residual gain (RG) and feed efficiency ratio (FE), which involve different genetic determinisms. An analysis that combines phenotype and whole-genome sequence data provides a unique framework for genomic studies. The aim of our study was to identify the gene networks and the biological processes that are responsible for the genetic determinism that is shared between these three feed efficiency criteria. RESULTS: A population of 1477 French Charolais young bulls was phenotyped for feed intake (FI), average daily gain (ADG) and final weight (FW) to estimate RFI, RG and FE. A subset of 789 young bulls was genotyped on the BovineSNP50 single nucleotide polymorphism (SNP) array and imputed at the sequence level using RUN6 of the 1000 Bull Genomes Project. We conducted a genome-wide association study (GWAS) to estimate the individual effect of 8.5 million SNPs and applied an association weight matrix (AWM) approach to analyse the results, one for each feed efficiency criterion. The results highlighted co-association networks including 626 genes for RFI, 426 for RG and 564 for FE. Enrichment assessment revealed the biological processes that show the strongest association with RFI, RG and FE, i.e. digestive tract (salivary, gastric and mucin secretion) and metabolic processes (cellular and cardiovascular). Energetic functions were more associated with RFI and FE and cardio-vascular and cellular processes with RG. Several hormones such as apelin, glucagon, insulin, aldosterone, the gonadotrophin releasing hormone and the thyroid hormone were also identified, and these should be tested in future studies as candidate biomarkers for feed efficiency. CONCLUSIONS: The combination of network and pathway analyses at the sequence level led to the identification of both common and specific mechanisms that are involved in RFI, RG and FE, and to a better understanding of the genetic determinism underlying these three criteria. The effects of the genes involved in each of the identified processes need to be tested in genomic evaluations to confirm the potential gain in reliability of using functional variants to select animals for feed efficiency.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/genética , Bovinos/genética , Redes Reguladoras de Genes , Animais , Peso Corporal/genética , Bovinos/crescimento & desenvolvimento , Digestão/genética , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
3.
Genet Sel Evol ; 52(1): 14, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183688

RESUMO

BACKGROUND: Bovine paratuberculosis is a contagious disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), with adverse effects on animal welfare and serious economic consequences. Published results on host genetic resistance to MAP are inconsistent, mainly because of difficulties in characterizing the infection status of cows. The objectives of this study were to identify quantitative trait loci (QTL) for resistance to MAP in Holstein and Normande cows with an accurately defined status for MAP. RESULTS: From MAP-infected herds, cows without clinical signs of disease were subjected to at least four repeated serum ELISA and fecal PCR tests over time to determine both infected and non-infected statuses. Clinical cases were confirmed using PCR. Only cows that had concordant results for all tests were included in further analyses. Positive and control cows were matched within herd according to their birth date to ensure a same level of exposure to MAP. Cows with accurate phenotypes, i.e. unaffected (control) or affected (clinical or non-clinical cases), were genotyped with the Illumina BovineSNP50 BeadChip. Genotypes were imputed to whole-genome sequences using the 1000 Bull Genomes reference population (run6). A genome-wide association study (GWAS) of MAP status of 1644 Holstein and 649 Normande cows, using either two (controls versus cases) or three classes of phenotype (controls, non-clinical and clinical cases), revealed three regions, on Bos taurus (BTA) chromosomes 12, 13, and 23, presenting significant effects in Holstein cows, while only one of those was identified in Normande cows (BTA23). The most significant effect was found on BTA13, in a short 8.5-kb region. Conditional analyses revealed that only one causal variant may be responsible for the effects observed on each chromosome with the ABCC4 (BTA12), CBFA2T2 (BTA13), and IER3 (BTA23) genes as good functional candidates. CONCLUSIONS: A sequence-based GWAS on cows for which resistance to MAP was accurately defined, was able to identify candidate variants located in genes that were functionally related to resistance to MAP; these explained up to 28% of the genetic variance of the trait. These results are very encouraging for efforts towards implementation of a breeding strategy aimed at improving resistance to paratuberculosis in Holstein cows.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Doenças dos Bovinos/genética , Cromossomos/genética , Estudo de Associação Genômica Ampla/veterinária , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Paratuberculose/genética , Locos de Características Quantitativas/genética , Proteínas Repressoras/genética , Animais , Cruzamento , Bovinos , Ensaio de Imunoadsorção Enzimática , Feminino , Genótipo , Mycobacterium avium subsp. paratuberculosis , Fenótipo
4.
Genet Sel Evol ; 51(1): 34, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262251

RESUMO

BACKGROUND: Milk quality in dairy cattle is routinely assessed via analysis of mid-infrared (MIR) spectra; this approach can also be used to predict the milk's cheese-making properties (CMP) and composition. When this method of high-throughput phenotyping is combined with efficient imputations of whole-genome sequence data from cows' genotyping data, it provides a unique and powerful framework with which to carry out genomic analyses. The goal of this study was to use this approach to identify genes and gene networks associated with milk CMP and composition in the Montbéliarde breed. RESULTS: Milk cheese yields, coagulation traits, milk pH and contents of proteins, fatty acids, minerals, citrate, and lactose were predicted from MIR spectra. Thirty-six phenotypes from primiparous Montbéliarde cows (1,442,371 test-day records from 189,817 cows) were adjusted for non-genetic effects and averaged per cow. 50 K genotypes, which were available for a subset of 19,586 cows, were imputed at the sequence level using Run6 of the 1000 Bull Genomes Project (comprising 2333 animals). The individual effects of 8.5 million variants were evaluated in a genome-wide association study (GWAS) which led to the detection of 59 QTL regions, most of which had highly significant effects on CMP and milk composition. The results of the GWAS were further subjected to an association weight matrix and the partial correlation and information theory approach and we identified a set of 736 co-associated genes. Among these, the well-known caseins, PAEP and DGAT1, together with dozens of other genes such as SLC37A1, ALPL, MGST1, SEL1L3, GPT, BRI3BP, SCD, GPAT4, FASN, and ANKH, explained from 12 to 30% of the phenotypic variance of CMP traits. We were further able to identify metabolic pathways (e.g., phosphate and phospholipid metabolism and inorganic anion transport) and key regulator genes, such as PPARA, ASXL3, and bta-mir-200c that are functionally linked to milk composition. CONCLUSIONS: By using an approach that integrated GWAS with network and pathway analyses at the whole-genome sequence level, we propose candidate variants that explain a substantial proportion of the phenotypic variance of CMP traits and could thus be included in genomic evaluation models to improve milk CMP in Montbéliarde cows.


Assuntos
Bovinos/genética , Queijo , Estudo de Associação Genômica Ampla/veterinária , Leite/química , Animais , Simulação por Computador , Conjuntos de Dados como Assunto , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Locos de Características Quantitativas , Sequenciamento Completo do Genoma/veterinária
5.
PLoS One ; 17(11): e0277458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445891

RESUMO

This study explored plasma biomarkers and metabolic pathways underlying feed efficiency measured as residual feed intake (RFI) in Charolais heifers. A total of 48 RFI extreme individuals (High-RFI, n = 24; Low-RFI, n = 24) were selected from a population of 142 heifers for classical plasma metabolite and hormone quantification and plasma metabolomic profiling through untargeted LC-MS. Most efficient heifers (Low-RFI) had greater (P = 0.03) plasma concentrations of IGF-1 and tended to have (P = 0.06) a lower back fat depth compared to least efficient heifers. However, no changes were noted (P ≥ 0.10) for plasma concentrations of glucose, insulin, non-esterified fatty acids, ß-hydroxybutyrate and urea. The plasma metabolomic dataset comprised 3,457 ions with none significantly differing between RFI classes after false discovery rate correction (FDR > 0.10). Among the 101 ions having a raw P < 0.05 for the RFI effect, 13 were putatively annotated by using internal databases and 6 compounds were further confirmed with standards. Metabolic pathway analysis from these 6 confirmed compounds revealed that the branched chain amino acid metabolism was significantly (FDR < 0.05) impacted by the RFI classes. Our results confirmed for the first time in beef heifers previous findings obtained in male beef cattle and pointing to changes in branched-chain amino acids metabolism along with that of body composition as biological mechanisms related to RFI. Further studies are warranted to ascertain whether there is a cause-and-effect relationship between these mechanisms and RFI.


Assuntos
Aminoácidos de Cadeia Ramificada , Plasma , Masculino , Bovinos , Animais , Feminino , Metabolômica , Ingestão de Alimentos , Progressão da Doença
6.
Sci Rep ; 11(1): 24346, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934071

RESUMO

Residual feed intake (RFI) is one of the preferred traits for feed efficiency animal breeding. However, RFI measurement is expensive and time-consuming and animal ranking may depend on the nature of the diets. We aimed to explore RFI plasma biomarkers and to unravel the underlying metabolic pathways in yearling bulls fed either a corn-silage diet rich in starch (corn diet) or a grass-silage diet rich in fiber (grass diet). Forty-eight extreme RFI animals (Low-RFI, n = 24, versus High-RFI, n = 24, balanced per diet) were selected from a population of 364 Charolais bulls and their plasma was subjected to a targeted LC-MS metabolomic approach together with classical metabolite and hormonal plasma analyses. Greater lean body mass and nitrogen use efficiency, and lower protein turnover were identified as common mechanisms underlying RFI irrespective of the diet. On the other hand, greater adiposity and plasma concentrations of branched-chain amino acids (BCAA) together with lower insulin sensitivity in High-RFI animals were only observed with corn diet. Conversely, greater plasma concentrations of BCAA and total triglycerides, but similar insulin concentrations were noted in efficient RFI cattle with grass diet. Our data suggest that there are diet-specific mechanisms explaining RFI differences in fattening Charolais yearling bulls.


Assuntos
Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Ingestão de Alimentos , Metaboloma , Poaceae/química , Zea mays/química , Animais , Composição Corporal , Bovinos , Dieta/classificação , Comportamento Alimentar , Masculino
7.
J Anim Sci ; 97(6): 2308-2319, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30957842

RESUMO

Improving feed efficiency is of interest to French beef producers so as to increase their profitability. To enable this improvement through selection, genetic correlations with production traits need to be quantified. The objective of this study was to estimate the genetic parameters for growth, feed efficiency (FE), and slaughter performance of young beef bulls of the French Charolais breed. Three feed efficiency criteria were calculated: residual feed intake (RFI), residual gain (RG), and ratio of FE. Data on feed intake, growth, and FE were available for 4,675 Charolais bulls tested in performance test stations and fed with pelleted diet. Between 1985 and 1989, 60 among 510 of these bulls were selected to procreate one generation of 1,477 progeny bulls which received the same pelleted diet at the experimental farm in Bourges. In addition to feed intake, growth, and FE traits, these terminal bulls also had slaughter traits of carcass yield, carcass composition, and weight of visceral organs collected. Genetic parameters were estimated using linear mixed animal models. Between performance test bulls and terminal bulls, the genetic correlation of RFI was 0.80 ± 0.18; it was 0.70 ± 0.21 for RG and 0.46 ± 0.20 for FE. For carcass traits, RFI was negatively correlated with carcass yield (-0.18 ± 0.14) and muscle content (-0.47 ± 0.14) and positively with fat content (0.48 ± 0.13). Conversely, RG and FE were positively correlated with carcass yield and muscle content and negatively with fat content. For the three FE criteria, efficient animals had leaner carcass. For visceral organs (as a proportion of empty body weight), RFI was genetically correlated with the proportions of the 5th quarter (0.51 ± 0.17), internal fat (0.36 ± 0.14), abomasum (0.46 ± 0.20), intestines (0.38 ± 0.17), liver (0.36 ± 0.16), and kidneys (0.73 ± 0.11). Conversely, RG and FE were negatively associated with these traits. The high-energy expenditure associated with the high-protein turnover in visceral organs may explain this opposite relationship between FE and the proportion of visceral organs. Selection for final weight and RFI increased growth and FE in progeny, and also improved carcass yield and muscle content in the carcass. To conclude, determinations of growth and feed intake in performance test stations are effective to select bulls to improve their growth, FE, and muscle content in carcass.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Ingestão de Alimentos , Metabolismo Energético , Animais , Composição Corporal , Peso Corporal , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Dieta/veterinária , Modelos Lineares , Masculino , Fenótipo
8.
J Anim Sci ; 97(9): 3684-3698, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31436836

RESUMO

Residual energy intake (REI) on two successive diets (hay and maize based) and slaughter traits, including visceral organs, were phenotyped in 584 adult purebred Charolais cows. To investigate the relationships between these traits and their genetic determinism, we first estimated the genetic parameters, including correlations, using REML modeling under WOMBAT software. The animals were then genotyped on the BovineSNP50 SNPchip before being imputed to the 600K density and genome wide association study was performed with GCTA software. We found low heritability for REI (h2 = 0.12 in each of the diet phases). Although the phenotypic correlation between the two diet phases was moderate (0.36), the genetic correlation was high (0.83), indicating a common genetic determinism for feed efficiency regardless of the diet. Correlations between REI and slaughter traits were negative regarding muscle-related traits and positive for fat-related traits, indicating that efficient animals generally had a more muscular carcass. It was also seen that feed efficiency was genetically and phenotypically correlated with smaller organs when expressed as a proportion of their empty body weight. From the GWAS analysis, seven QTLs were found to be associated with a trait at the genome-wide level of significance and 18 others at the chromosome-wide level. One important QTL was detected in BTA 2, reflecting the essential effect of the myostatin gene on both carcass composition and relative organ weight. Three QTLs were detected for REI during the maize diet phase on BTA 13, 19, and 28, the latter being significant at the genome-wide level. The QTLs on BTA 19 mapped into the TANC2 gene and the QTLs on BTA 28 into the KIF1BP gene, which are both known to interact with the same protein (KIF1A). However, no obvious functional link between these genes and feed efficiency could be made. Among the other QTLs detected, one association on BTA 4 with liver proportion mapped to the candidate gene WASL, which has previously been shown to be differentially expressed in liver cells and linked to feed restriction or cancer development. No QTLs were found to be common between feed efficiency and any slaughter traits.


Assuntos
Ração Animal/análise , Bovinos/genética , Ingestão de Energia , Estudo de Associação Genômica Ampla/veterinária , Locos de Características Quantitativas/genética , Animais , Bovinos/fisiologia , Dieta/veterinária , Ingestão de Alimentos , Feminino , Genótipo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA