Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 157(3): 726-39, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24746791

RESUMO

Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.


Assuntos
Neuroimagem/métodos , Animais , Encéfalo/citologia , Callithrix , Indicadores e Reagentes/química , Camundongos , Microscopia/métodos
2.
Nucleic Acids Res ; 47(D1): D859-D866, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30371824

RESUMO

Understanding anatomical structures and biological functions based on gene expression is critical in a systemic approach to address the complexity of the mammalian brain, where >25 000 genes are expressed in a precise manner. Co-expressed genes are thought to regulate cell type- or region-specific brain functions. Thus, well-designed data acquisition and visualization systems for profiling combinatorial gene expression in relation to anatomical structures are crucial. To this purpose, using our techniques of microtomy-based gene expression measurements and WebGL-based visualization programs, we mapped spatial expression densities of genome-wide transcripts to the 3D coordinates of mouse brains at four post-natal stages, and built a database, ViBrism DB (http://vibrism.neuroinf.jp/). With the DB platform, users can access a total of 172 022 expression maps of transcripts, including coding, non-coding and lncRNAs in the whole context of 3D magnetic resonance (MR) images. Co-expression of transcripts is represented in the image space and in topological network graphs. In situ hybridization images and anatomical area maps are browsable in the same space of 3D expression maps using a new browser-based 2D/3D viewer, BAH viewer. Created images are shareable using URLs, including scene-setting parameters. The DB has multiple links and is expandable by community activity.


Assuntos
Encéfalo/diagnóstico por imagem , Bases de Dados Genéticas , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Animais , Encéfalo/anatomia & histologia , Imageamento Tridimensional/classificação , Camundongos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA