Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 22(8): 2341-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23432406

RESUMO

Mycorrhizal association is a common characteristic in a majority of land plants, and the survival and distribution of a species can depend on the distribution of suitable fungi in its habitat. Orchidaceae is one of the most species-rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and some also for subsequent growth and survival. Given this obligate dependence, at least in the early growth stages, elucidating the patterns of orchid-mycorrhizal relationships is critical to orchid biology, ecology and conservation. To assess whether rarity of an orchid is determined by its specificity towards its fungal hosts, we studied the spatial and temporal variability in the host fungi associated with one of the rarest North American terrestrial orchids, Piperia yadonii. The fungal internal transcribed spacer region was amplified and sequenced by sampling roots from eight populations of P. yadonii distributed across two habitats, Pinus radiata forest and maritime chaparral, in California. Across populations and sampling years, 26 operational taxonomic units representing three fungal families, the Ceratobasidiaceae, Sebacinaceae and Tulasnellaceae, were identified. Fungi belonging to the Sebacinaceae were documented in orchid roots only at P. radiata forest sites, while those from the Ceratobasidiaceae and Tulasnellaceae occurred in both habitats. Our results indicate that orchid rarity can be unrelated to the breadth of mycorrhizal associations. Our data also show that the dominance of various fungal families in mycorrhizal plants can be influenced by habitat preferences of mycorrhizal partners.


Assuntos
Micorrizas/genética , Orchidaceae/genética , Simbiose/genética , Sequência de Bases , Ecossistema , Germinação/genética , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/crescimento & desenvolvimento , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/microbiologia , Fotossíntese/genética , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Especificidade da Espécie , Árvores
2.
PeerJ ; 6: e5008, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002952

RESUMO

BACKGROUND: The post-harvest recovery and sustained productivity of Nothofagus pumilio forests in Tierra del Fuego may be affected by the abundance and composition of ectomycorrhizal fungi (EMF). Timber harvesting alters EMF community structure in many managed forests, but the impacts of harvesting can vary with the management strategy. The implementation of variable retention (VR) management can maintain, increase, or decrease the diversity of many species, but the effects of VR on EMF in the forests of southern Patagonia have not been studied, nor has the role of EMF in the regeneration process of these forests. METHODS: We evaluated the effects of VR management on the EMF community associated with N. pumilio seedlings. We quantified the abundance, composition, and diversity of EMF across aggregate (AR) and dispersed (DR) retention sites within VR managed areas, and compared them to primary forest (PF) unmanaged stands. EMF assemblage and taxonomic identities were determined by ITS-rDNA sequencing of individual root tips sampled from 280 seedlings across three landscape replicates. To better understand seedling performance, we tested the relationships between EMF colonization, EMF taxonomic composition, seedling biomass, and VR treatment. RESULTS: The majority of EMF taxa were Basidiomycota belonging to the families Cortinariaceae (n = 29), Inocybaceae (n = 16), and Thelephoraceae (n = 8), which was in agreement with other studies of EMF diversity in Nothofagus forests. EMF richness and colonization was reduced in DR compared to AR and PF. Furthermore, EMF community composition was similar between AR and PF, but differed from the composition in DR. EMF community composition was correlated with seedling biomass and soil moisture. The presence of Peziza depressa was associated with higher seedling biomass and greater soil moisture, while Inocybe fibrillosibrunnea and Cortinarius amoenus were associated with reduced seedling biomass and lower soil moisture. Seedling biomass was more strongly related to retention type than EMF colonization, richness, or composition. DISCUSSION: Our results demonstrate reduced EMF attributes and altered composition in VR treatments relative to PF stands, with stronger impacts in DR compared to AR. This suggests that VR has the potential to improve the conservation status of managed stands by supporting native EMF in AR. Our results also demonstrate the complex linkages between retention treatments, fungal community composition, and tree growth at individual and stand scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA