Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(1): 1-9, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33693784

RESUMO

Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele). Whole exome sequencing of the two affected siblings and the normal parents resulted in the identification of a PAK2 non-synonymous substitution p.(Glu435Lys) as a causative variant. The variant was monoallelic and apparently de novo in both siblings indicating a likely germ-line mosaicism in one of the parents; the mosaicism, however, could not be observed after deep sequencing of blood parental DNA. PAK2 encodes a member of a small group of serine/threonine kinases; these P21-activating kinases (PAKs) are essential in signal transduction and cellular regulation (cytoskeletal dynamics, cell motility, death and survival signaling and cell cycle progression). Structural analysis of the PAK2 p.(Glu435Lys) variant that is located in the kinase domain of the protein predicts a possible compromise in the kinase activity. Functional analysis of the p.(Glu435Lys) PAK2 variant in transfected HEK293T cells results in a partial loss of the kinase activity. PAK2 has been previously suggested as an autism-related gene. Our results show that PAK2-induced phenotypic spectrum is broad and not fully understood. We conclude that the KNO2 syndrome in the studied family is dominant and caused by a deleterious variant in the PAK2 gene.


Assuntos
Degeneração Retiniana , Descolamento Retiniano , Encefalocele/diagnóstico , Encefalocele/genética , Encefalocele/patologia , Células HEK293 , Humanos , Mutação , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Descolamento Retiniano/congênito , Descolamento Retiniano/genética , Quinases Ativadas por p21/genética
2.
J Hum Genet ; 67(1): 19-26, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34244600

RESUMO

Protein arginine N-methyltransferase 7 (PRMT7) encodes an arginine methyltransferase central to a number of fundamental biological processes, mutations in which result in an autosomal recessive developmental disorder characterized by short stature, brachydactyly, intellectual developmental disability and seizures (SBIDDS). To date, fewer than 15 patients with biallelic mutations in PRMT7 have been documented. Here we report brothers from a consanguineous Iraqi family presenting with a developmental disorder characterized by global developmental delay, shortened stature, facial dysmorphisms, brachydactyly, and kidney dysfunction. In both affected brothers, whole genome sequencing (WGS) identified a novel homozygous substitution in PRMT7 (ENST00000339507.5), c.1097 G > A (p.Cys366Tyr), considered to account for the majority of the phenotypic presentation. Rare compound heterozygous mutations in the dysplasia-associated perlecan-encoding HSPG2 gene (ENST00000374695.3) were also found (c.10721-2dupA, p.Ser71Asn and c.212 G > A), potentially accounting for the kidney dysfunction. In addition to expanding the known mutational spectrum of variably expressive PRMT7 mutations alongside potential digenic inheritance with HSPG2, this report underlines the diagnostic utility of a WGS-guided analysis in the detection of rare genetic disorders.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Fenótipo , Proteína-Arginina N-Metiltransferases/genética , Alelos , Consanguinidade , Estudos de Associação Genética/métodos , Genótipo , Humanos , Iraque
3.
Am J Med Genet A ; 188(8): 2460-2465, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35642566

RESUMO

The phenotypic spectrum of SOX11-related Coffin-Siris syndrome (CSS) is expanding with reports of new associations. SOX11 is implicated in neurogenesis and inner ear development. Cochlear nerve deficiency, absence or hypoplasia, is commonly associated with cochlear canal stenosis or with CHARGE syndrome, a monogenic condition that affects inner ear development. SOX11 is a transcription factor essential for neuronal identity, highly correlated with the expression of CHD7, which regulates SOX11. We present two unrelated probands, each with novel de novo SOX11 likely pathogenic variants and phenotypic manifestations of CSS including global developmental delay, growth deficiency, and hypoplastic nails. They have unilateral sensorineural hearing loss due to cochlear nerve deficiency confirmed on MRI. SOX11 is implicated in sensory neuron survival and maturation. It is highly expressed in the developing inner ear. Homozygous ablation of SOX11 in a mouse model resulted in a reduction in sensory neuron survival and decreased axonal growth. A heterozygous knockout mice model had hearing impairment with grossly normal inner ear structures like the two probands reported. We propose cochlear nerve deficiency as a new phenotypic feature of SOX11-related CSS. Magnetic resonance imaging is useful in delineating the cochlear nerve deficiency and other CSS-related brain malformations.


Assuntos
Síndrome CHARGE , Deformidades Congênitas da Mão , Perda Auditiva Neurossensorial , Micrognatismo , Anormalidades Múltiplas , Animais , Nervo Coclear , Face/anormalidades , Deformidades Congênitas da Mão/genética , Perda Auditiva Neurossensorial/genética , Deficiência Intelectual , Camundongos , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição SOXC
4.
Genet Med ; 23(1): 149-154, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873933

RESUMO

PURPOSE: Biallelic variants in TBC1D24, which encodes a protein that regulates vesicular transport, are frequently identified in patients with DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [previously referred to as mental retardation], and seizures) syndrome. The aim of the study was to identify a genetic cause in families with DOORS syndrome and without a TBC1D24 variant. METHODS: Exome or Sanger sequencing was performed in individuals with a clinical diagnosis of DOORS syndrome without TBC1D24 variants. RESULTS: We identified the same truncating variant in ATP6V1B2 (NM_001693.4:c.1516C>T; p.Arg506*) in nine individuals from eight unrelated families with DOORS syndrome. This variant was already reported in individuals with dominant deafness onychodystrophy (DDOD) syndrome. Deafness was present in all individuals, along with onychodystrophy and abnormal fingers and/or toes. All families but one had developmental delay or intellectual disability and five individuals had epilepsy. We also describe two additional families with DDOD syndrome in whom the same variant was found. CONCLUSION: We expand the phenotype associated with ATP6V1B2 and propose another causal gene for DOORS syndrome. This finding suggests that DDOD and DOORS syndromes might lie on a spectrum of clinically and molecularly related conditions.


Assuntos
Epilepsia , Deficiência Intelectual , Unhas Malformadas , ATPases Vacuolares Próton-Translocadoras , Epilepsia/genética , Exoma , Proteínas Ativadoras de GTPase , Humanos , Deficiência Intelectual/genética , Unhas Malformadas/genética , Fenótipo , ATPases Vacuolares Próton-Translocadoras/genética
5.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992769

RESUMO

Stimulator of interferon genes (STING)-mediated type-I interferon signaling is a well characterized instigator of the innate immune response following bacterial or viral infections in the periphery. Emerging evidence has recently linked STING to various neuropathological conditions, however, both protective and deleterious effects of the pathway have been reported. Elevated oxidative stress, such as neuroinflammation, is a feature of a number of neuropathologies, therefore, this study investigated the role of the STING pathway in cell death induced by elevated oxidative stress. Here, we report that the H2O2-induced activation of the STING pathway is protective against cell death in wildtype (WT) MEFSV40 cells as compared to STING-/- MEF SV40 cells. This protective effect of STING can be attributed, in part, to an increase in autophagy flux with an increased LC3II/I ratio identified in H2O2-treated WT cells as compared to STING-/- cells. STING-/- cells also exhibited impaired autophagic flux as indicated by p62, LC3-II and LAMP2 accumulation following H2O2 treatment, suggestive of an impairment at the autophagosome-lysosomal fusion step. This indicates a previously unrecognized role for STING in maintaining efficient autophagy flux and protecting against H2O2-induced cell death. This finding supports a multifaceted role for the STING pathway in the underlying cellular mechanisms contributing to the pathogenesis of neurological disorders.


Assuntos
Autofagia , Morte Celular , Proteínas de Membrana/fisiologia , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Peróxido de Hidrogênio/toxicidade , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
6.
J Biol Chem ; 293(27): 10810-10824, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769320

RESUMO

It is estimated that ∼1% of the world's population has intellectual disability, with males affected more often than females. OGT is an X-linked gene encoding for the enzyme O-GlcNAc transferase (OGT), which carries out the reversible addition of N-acetylglucosamine (GlcNAc) to Ser/Thr residues of its intracellular substrates. Three missense mutations in the tetratricopeptide (TPR) repeats of OGT have recently been reported to cause X-linked intellectual disability (XLID). Here, we report the discovery of two additional novel missense mutations (c.775 G>A, p.A259T, and c.1016 A>G, p.E339G) in the TPR domain of OGT that segregate with XLID in affected families. Characterization of all five of these XLID missense variants of OGT demonstrates modest declines in thermodynamic stability and/or activities of the variants. We engineered each of the mutations into a male human embryonic stem cell line using CRISPR/Cas9. Investigation of the global O-GlcNAc profile as well as OGT and O-GlcNAc hydrolase levels by Western blotting showed no gross changes in steady-state levels in the engineered lines. However, analyses of the differential transcriptomes of the OGT variant-expressing stem cells revealed shared deregulation of genes involved in cell fate determination and liver X receptor/retinoid X receptor signaling, which has been implicated in neuronal development. Thus, here we reveal two additional mutations encoding residues in the TPR regions of OGT that appear causal for XLID and provide evidence that the relatively stable and active TPR variants may share a common, unelucidated mechanism of altering gene expression profiles in human embryonic stem cells.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Genes Ligados ao Cromossomo X , Marcadores Genéticos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/genética , Diferenciação Celular , Criança , Cristalografia por Raios X , Células-Tronco Embrionárias/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Deficiência Intelectual/enzimologia , Deficiência Intelectual/patologia , Masculino , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/metabolismo , Linhagem , Conformação Proteica , Transdução de Sinais
7.
Neurogenetics ; 20(3): 145-154, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31209758

RESUMO

Both copy number losses and gains occur within subtelomeric 9q34 region without common breakpoints. The microdeletions cause Kleefstra syndrome (KS), whose responsible gene is EHMT1. A 9q34 duplication syndrome (9q34 DS) had been reported in literature, but it has never been characterized by a detailed molecular analysis of the gene content and endpoints. To the best of our knowledge, we report on the first patient carrying the smallest 9q34.3 duplication containing EHMT1 as the only relevant gene. We compared him with 21 reported patients described here as carrying 9q34.3 duplications encompassing the entire gene and extending within ~ 3 Mb. By surveying the available clinical and molecular cytogenetic data, we were able to discover that similar neurodevelopmental disorders (NDDs) were shared by patient carriers of even very differently sized duplications. Moreover, some facial features of the 9q34 DS were more represented than those of KS. However, an accurate in silico analysis of the genes mapped in all the duplications allowed us to support EHMT1 as being sufficient to cause a NDD phenotype. Wider patient cohorts are needed to ascertain whether the rearrangements have full causative role or simply confer the susceptibility to NDDs and possibly to identify the cognitive and behavioral profile associated with the increased dosage of EHMT1.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 9 , Histona-Lisina N-Metiltransferase/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Hibridização Genômica Comparativa , Bases de Dados Factuais , Feminino , França , Dosagem de Genes , Humanos , Hibridização in Situ Fluorescente , Itália , Masculino , Anotação de Sequência Molecular , Nova Zelândia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Síndrome
8.
Neurochem Res ; 44(6): 1410-1424, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30661228

RESUMO

Traumatic brain injury triggers neuroinflammation that may contribute to progressive neurodegeneration. We investigated patterns of recruitment of astrocytes and microglia to inflammation after brain trauma by firstly characterising expression profiles over time of marker genes following TBI, and secondly by monitoring glial morphologies reflecting inflammatory responses in a rat model of traumatic brain injury (i.e. the lateral fluid percussion injury). Gene expression profiles revealed early elevation of expression of astrocytic marker glial fibrillary acidic protein relative to microglial marker allograft inflammatory factor 1 (also known as ionized calcium-binding adapter molecule 1). Adult rat brains collected at day 7 after injury were processed for immunohistochemistry with allograft inflammatory factor 1, glial fibrillary acidic protein and complement C3 (marker of bad/disruptive astrocytic A1 phenotype). Astrocytes positive for glial fibrillary acidic protein and complement C3 were significant increased in the injured cortex and displayed more complex patterns of arbourisation with significantly increased bifurcations. Our observations suggested that traumatic brain injury changed the phenotype of microglia from a ramified appearance with long, thin, highly branched processes to a swollen amoeboid shape in the injured cortex. These findings suggest differential glial activation with astrocytes likely undergoing strategic changes in morphology and function. Whilst a detailed analysis is needed of temporal patterns of glial activation, ours is the first evidence of a role for the bad/disruptive astrocytic A1 phenotype in an open head model of traumatic brain injury.


Assuntos
Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Animais , Astrócitos/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Complemento C3/metabolismo , Equidae , Proteína Glial Fibrilar Ácida/metabolismo , Cabras , Masculino , Camundongos , Microglia/patologia , Coelhos , Ratos Sprague-Dawley
9.
Hum Mutat ; 39(12): 1980-1994, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30168660

RESUMO

SH3 and cysteine-rich domain-containing protein 3 (STAC3) is an essential component of the skeletal muscle excitation-contraction coupling (ECC) machinery, though its role and function are not yet completely understood. Here, we report 18 patients carrying a homozygous p.(Trp284Ser) STAC3 variant in addition to a patient compound heterozygous for the p.(Trp284Ser) and a novel splice site change (c.997-1G > T). Clinical severity ranged from prenatal onset with severe features at birth, to a milder and slowly progressive congenital myopathy phenotype. A malignant hyperthermia (MH)-like reaction had occurred in several patients. The functional analysis demonstrated impaired ECC. In particular, KCl-induced membrane depolarization resulted in significantly reduced sarcoplasmic reticulum Ca2+ release. Co-immunoprecipitation of STAC3 with CaV 1.1 in patients and control muscle samples showed that the protein interaction between STAC3 and CaV 1.1 was not significantly affected by the STAC3 variants. This study demonstrates that STAC3 gene analysis should be included in the diagnostic work up of patients of any ethnicity presenting with congenital myopathy, in particular if a history of MH-like episodes is reported. While the precise pathomechanism remains to be elucidated, our functional characterization of STAC3 variants revealed that defective ECC is not a result of CaV 1.1 sarcolemma mislocalization or impaired STAC3-CaV 1.1 interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Hipertermia Maligna/genética , Miotonia Congênita/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Adolescente , Cálcio/metabolismo , Criança , Pré-Escolar , Acoplamento Excitação-Contração , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Masculino , Hipertermia Maligna/etiologia , Hipertermia Maligna/metabolismo , Miotonia Congênita/complicações , Miotonia Congênita/metabolismo , Linhagem , Fenótipo , Ligação Proteica , Transporte Proteico , Retículo Sarcoplasmático/metabolismo , Índice de Gravidade de Doença , Sequenciamento do Exoma , Adulto Jovem
10.
J Neuroinflammation ; 15(1): 323, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463579

RESUMO

BACKGROUND: Traumatic brain injury (TBI) represents a major cause of disability and death worldwide with sustained neuroinflammation and autophagy dysfunction contributing to the cellular damage. Stimulator of interferon genes (STING)-induced type-I interferon (IFN) signalling is known to be essential in mounting the innate immune response against infections and cell injury in the periphery, but its role in the CNS remains unclear. We previously identified the type-I IFN pathway as a key mediator of neuroinflammation and neuronal cell death in TBI. However, the modulation of the type-I IFN and neuroinflammatory responses by STING and its contribution to autophagy and neuronal cell death after TBI has not been explored. METHODS: C57BL/6J wild-type (WT) and STING-/- mice (8-10-week-old males) were subjected to controlled cortical impact (CCI) surgery and brains analysed by QPCR, Western blot and immunohistochemical analyses at 2 h or 24 h. STING expression was also analysed by QPCR in post-mortem human brain samples. RESULTS: A significant upregulation in STING expression was identified in late trauma human brain samples that was confirmed in wild-type mice at 2 h and 24 h after CCI. This correlated with an elevated pro-inflammatory cytokine profile with increased TNF-α, IL-6, IL-1ß and type-I IFN (IFN-α and IFN-ß) levels. This expression was suppressed in the STING-/- mice with a smaller lesion volume in the knockout animals at 24 h post CCI. Wild-type mice also displayed increased levels of autophagy markers, LC3-II, p62 and LAMP2 after TBI; however, STING-/- mice showed reduced LAMP2 expression suggesting a role for STING in driving dysfunctional autophagy after TBI. CONCLUSION: Our data implicates a detrimental role for STING in mediating the TBI-induced neuroinflammatory response and autophagy dysfunction, potentially identifying a new therapeutic target for reducing cellular damage in TBI.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Encéfalo/metabolismo , Encefalite/etiologia , Encefalite/metabolismo , Regulação da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , Animais , Autofagia/genética , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo
11.
J Neural Transm (Vienna) ; 125(5): 797-807, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28676934

RESUMO

Past research in Alzheimer's disease (AD) has largely been driven by the amyloid hypothesis; the accompanying neuroinflammation seen in AD has been assumed to be consequential and not disease modifying or causative. However, recent data from both clinical and preclinical studies have established that the immune-driven neuroinflammation contributes to AD pathology. Key evidence for the involvement of neuroinflammation in AD includes enhanced microglial and astroglial activation in the brains of AD patients, increased pro-inflammatory cytokine burden in AD brains, and epidemiological evidence that chronic non-steroidal anti-inflammatory drug use prior to disease onset leads to a lower incidence of AD. Identifying critical mediators controlling this neuroinflammation will prove beneficial in developing anti-inflammatory therapies for the treatment of AD. The type-I interferons (IFNs) are pleiotropic cytokines that control pro-inflammatory cytokine secretion and are master regulators of the innate immune response that impact on disorders of the central nervous system. This review provides evidence that the type-I IFNs play a critical role in the exacerbation of neuroinflammation and actively contribute to the progression of AD.


Assuntos
Doença de Alzheimer/imunologia , Inflamação/imunologia , Interferon Tipo I/imunologia , Degeneração Neural/imunologia , Doença de Alzheimer/patologia , Animais , Encéfalo/imunologia , Encéfalo/patologia , Humanos , Inflamação/patologia , Degeneração Neural/patologia
12.
J Neurochem ; 141(1): 75-85, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28029694

RESUMO

Evidence from post-mortem human brains, animal studies and cell culture models has implicated neuroinflammation in the aetiology of chronic neuropathologies including Alzheimer's and Parkinson's diseases. Although the neuroinflammatory response is considered detrimental in contributing to these pathologies, the underlying mechanisms are still not well understood. The type-I interferons (IFNs) have been well characterised in the periphery and are known to initiate/modulate the immune response. Recently, they have been implicated in ageing and we have also demonstrated increased type-I IFN expression in post-mortem human Alzheimer's and Parkinson's disease brains. We hypothesise that the type-I IFNs are key drivers of the damaging, self-perpetuating pro-inflammatory response that contributes to these chronic neuropathologies. In support of this, we have recently confirmed in models of Alzheimer's and Parkinson's disease that mice lacking the type-I IFN receptor (IFNAR1), display an attenuated neuroinflammatory response with subsequent neuroprotection. To further investigate type-I IFN-mediated neuroinflammation and the specific CNS cell types involved, this study treated primary cultured wild-type and IFNAR1-/- neurons or mixed glia with the mitochondrial complex I inhibitor, rotenone. Wild-type neurons and glia treated with 3 nM and 25 nM rotenone, respectively, exhibited a pro-inflammatory response, including increased type-I IFN expression that was attenuated in cells lacking IFNAR1. Reduced type-I IFN signalling in IFNAR1-/- neurons also conferred protection against caspase-3-mediated rotenone-induced cell death. Further, this reduced pro-inflammatory response in the IFNAR1-/- glia subsequently diminished their neurotoxic effects to wild-type neurons. In support of this, we confirmed that therapeutically targeting the type-I IFN glial response to rotenone through a specific IFNAR1 blocking monoclonal antibody was neuroprotective. Our data has confirmed that both neurons and glia contribute to the pro-inflammatory response induced by rotenone with attenuation of this response beneficial in reducing neuronal cell death. Read the Editorial Comment for this article on page 9.


Assuntos
Imunidade Inata/fisiologia , Mediadores da Inflamação/metabolismo , Interferon Tipo I/fisiologia , Síndromes Neurotóxicas/metabolismo , Rotenona/toxicidade , Animais , Anticorpos Monoclonais/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Interferon Tipo I/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/patologia , Gravidez
13.
Glia ; 64(9): 1590-604, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27404846

RESUMO

Type-1 interferons (IFNs) are pleiotropic cytokines with a critical role in the initiation and regulation of the pro-inflammatory response. However, the contribution of the type-1 IFNs to CNS disorders, specifically chronic neuropathologies such as Parkinson's disease is still unknown. Here, we report increased type-1 IFN signaling in both post mortem human Parkinson's disease samples and in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model. In response to MPTP, mice lacking the type-1 IFN receptor (IFNAR1(-/-) ) displayed decreased type-1 IFN signaling, an attenuated pro-inflammatory response and reduced loss of dopaminergic neurons. The neuroprotective potential of targeting the type-1 IFN pathway was confirmed by reduced neuroinflammation and DA cell death in mice treated with a blocking monoclonal IFNAR1 (MAR-1) antibody. The MPTP/MAR-1 treated mice also displayed increased striatal dopamine levels and improved behavioural outcomes compared to their MPTP/IgG controls. These data, implicate for the first time, a deleterious role for the type-1 IFNs as key modulators of the early neuroinflammatory response and therefore the neuronal cell death in Parkinson's disease. GLIA 2016;64:1590-1604.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Interferon Tipo I/genética , Doença de Parkinson/genética , Animais , Morte Celular/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Inflamação/genética , Interferon Tipo I/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Doença de Parkinson/patologia , Substância Negra/patologia
14.
J Neurochem ; 136(3): 457-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26509334

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. Deposition of amyloid-ß (Aß) remains a hallmark feature of the disease, yet the precise mechanism(s) by which this peptide induces neurotoxicity remain unknown. Neuroinflammation has long been implicated in AD pathology, yet its contribution to disease progression is still not understood. Recent evidence suggests that various Aß complexes interact with microglial and astrocytic expressed pattern recognition receptors that initiate innate immunity. This process involves secretion of pro-inflammatory cytokines, chemokines and generation of reactive oxygen species that, in excess, drive a dysregulated immune response that contributes to neurodegeneration. The mechanisms by which a neuroinflammatory response can influence Aß production, aggregation and eventual clearance are now becoming key areas where future therapeutic intervention may slow progression of AD. This review will focus on evidence supporting the combined neuroinflammatory-amyloid hypothesis for pathogenesis of AD, describing the key cell types, pathways and mediators involved. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. Deposition of intracellular plaques containing amyloid-beta (Aß) is a hallmark proteinopathy of the disease yet the precise mechanisms by which this peptide induces neurotoxicity remains unknown. A neuroinflammatory response involving polarized microglial activity, enhanced astrocyte reactivity and elevated pro-inflammatory cytokine and chemokine load has long been implicated in AD and proposed to facilitate neurodegeneration. In this issue we discuss key receptor systems of innate immunity that detect Aß, drive pro-inflammatory cytokine and chemokine production and influence Aß aggregation and clearance. Evidence summarized in this review supports the combined neuroinflammatory-amyloid hypothesis for pathogenesis of AD and highlights the potential of immunomodulatory agents as potential future therapies for AD patients.


Assuntos
Doença de Alzheimer , Proteínas Amiloidogênicas/metabolismo , Citocinas/metabolismo , Encefalite/complicações , Imunidade Inata , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Neuroglia/patologia
16.
J Inherit Metab Dis ; 39(2): 305-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26497564

RESUMO

Two male siblings from a consanguineous union presented in early infancy with marked truncal hypotonia, a general paucity of movement, extrapyramidal signs and cognitive delay. By mid-childhood they had made little developmental progress and remained severely hypotonic and bradykinetic. They developed epilepsy and had problems with autonomic dysfunction and oculogyric crises. They had a number of orthopaedic problems secondary to their hypotonia. Cerebrospinal fluid (CSF) neurotransmitters were initially normal, apart from mildly elevated 5-hydroxyindolacetic acid, and the children did not respond favourably to a trial of levodopa-carbidopa. The youngest died from respiratory complications at 10 years of age. Repeat CSF neurotransmitters in the older sibling at eight years of age showed slightly low homovanillic acid and 5-hydroxyindoleacetic acid levels. Whole-exome sequencing revealed a novel mutation homozygous in both children in the monoamine transporter gene SLC18A2 (p.Pro237His), resulting in brain dopamine-serotonin vesicular transport disease. This is the second family to be described with a mutation in this gene. Treatment with the dopamine agonist pramipexole in the surviving child resulted in mild improvements in alertness, communication, and eye movements. This case supports the identification of the causal mutation in the original case, expands the clinical phenotype of brain dopamine-serotonin vesicular transport disease and confirms that pramipexole treatment may lead to symptomatic improvement in affected individuals.


Assuntos
Encefalopatias/genética , Encefalopatias/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Serotonina/metabolismo , Encéfalo/efeitos dos fármacos , Encefalopatias/tratamento farmacológico , Carbidopa/uso terapêutico , Criança , Humanos , Levodopa/uso terapêutico , Masculino , Transtornos Parkinsonianos/tratamento farmacológico , Polimorfismo de Nucleotídeo Único/genética
17.
J Neuroinflammation ; 12: 71, 2015 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25879763

RESUMO

BACKGROUND: Neuro-inflammation has long been implicated as a contributor to the progression of Alzheimer's disease in both humans and animal models. Type-1 interferons (IFNs) are pleiotropic cytokines critical in mediating the innate immune pro-inflammatory response. The production of type-1 IFNs following pathogen detection is, in part, through the activation of the toll-like receptors (TLRs) and subsequent signalling through myeloid differentiation factor-88 (Myd88) and interferon regulatory factors (IRFs). We have previously identified that neuronal type-1 IFN signalling, through the type-1 interferon alpha receptor-1 (IFNAR1), is detrimental in models of AD. Using an in vitro approach, this study investigated the TLR network as a potential production pathway for neuronal type-1 IFNs in response to Aß. METHODS: Wildtype and Myd88(-/-) primary cultured cortical and hippocampal neurons were treated with 2.5 µM Aß1-42 for 24 to 72 h or 1 to 10 µM Aß1-42 for 72 h. Human BE(2)M17 neuroblastoma cells stably expressing an IRF7 small hairpin RNA (shRNA) or negative control shRNA construct were subjected to 7.5 µM Aß1-42/Aß42-1 for 24 to 96 h, 2.5 to 15 µM Aß1-42 for 96 h or 100 ng/ml LPS for 0.5 to 24 h. Q-PCR was used to analyse IFNα, IFNß, IL-1ß, IL-6 and TNFα mRNA transcript levels. Phosphorylation of STAT-3 was detected by Western blot analysis, and cell viability was assessed by MTS assay. RESULTS: Reduced IFNα, IFNß, IL-1ß, IL-6 and TNFα expression was detected in Aß1-42-treated Myd88(-/-) neurons compared to wildtype cells. This correlated with reduced phosphorylation of STAT-3, a downstream type-1 IFN signalling mediator. Significantly, Myd88(-/-) neuronal cultures were protected against Aß1-42-induced neurotoxicity compared to wildtype as determined by MTS assay. Knockdown of IRF7 in M17 cells was sufficient in blocking IFNα, IFNß and p-STAT-3 induction to both Aß1-42 and the TLR4 agonist LPS. M17 IRF7 KD cells were also protected against Aß1-42-induced cytotoxicity. CONCLUSIONS: This study confirms that the neuronal type-1 IFN response to soluble amyloid is mediated primarily through TLRs. This production is dependent upon Myd88 and IRF7 signalling. This study suggests that targeting this pathway to modulate neuronal type-1 IFN levels may be beneficial in controlling Aß-induced neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fragmentos de Peptídeos/farmacologia , Análise de Variância , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Regulação da Expressão Gênica/genética , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Neuroblastoma/patologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transfecção
18.
J Neuroinflammation ; 11: 43, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24602263

RESUMO

BACKGROUND: Hypoxic-ischaemic injuries such as stroke and traumatic brain injury exhibit features of a distinct neuro-inflammatory response in the hours and days post-injury. Microglial activation, elevated pro-inflammatory cytokines and macrophage infiltration contribute to core tissue damage and contribute to secondary injury within a region termed the penumbra. Type-1 interferons (IFNs) are a super-family of pleiotropic cytokines that regulate pro-inflammatory gene transcription via the classical Jak/Stat pathway; however their role in hypoxia-ischaemia and central nervous system neuro-inflammation remains unknown. Using an in vitro approach, this study investigated the role of type-1 IFN signalling in an inflammatory setting induced by oxygen glucose deprivation (OGD). METHODS: Human BE(2)M17 neuroblastoma cells or cells expressing a type-1 interferon-α receptor 1 (IFNAR1) shRNA or negative control shRNA knockdown construct were subjected to 4.5 h OGD and a time-course reperfusion period (0 to 24 h). Q-PCR was used to evaluate IFNα, IFNß, IL-1ß, IL-6 and TNF-α cytokine expression levels. Phosphorylation of signal transducers and activators of transcription (STAT)-1, STAT-3 and cleavage of caspase-3 was detected by western blot analysis. Post-OGD cellular viability was measured using a MTT assay. RESULTS: Elevated IFNα and IFNß expression was detected during reperfusion post-OGD in parental M17 cells. This correlated with enhanced phosphorylation of STAT-1, a downstream type-1 IFN signalling mediator. Significantly, ablation of type-1 IFN signalling, through IFNAR1 knockdown, reduced IFNα, IFNß, IL-6 and TNF-α expression in response to OGD. In addition, MTT assay confirmed the IFNAR1 knockdown cells were protected against OGD compared to negative control cells with reduced pro-apoptotic cleaved caspase-3 levels. CONCLUSIONS: This study confirms a role for type-1 IFN signalling in the neuro-inflammatory response following OGD in vitro and suggests its modulation through therapeutic blockade of IFNAR1 may be beneficial in reducing hypoxia-induced neuro-inflammation.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Glucose/deficiência , Hipóxia/fisiopatologia , Inflamação/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Análise de Variância , Linhagem Celular Tumoral , Citocinas/genética , Humanos , Neuroblastoma/patologia , Fosforilação , Isoformas de Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor de Interferon alfa e beta/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transfecção
19.
Mol Genet Genomic Med ; 12(1): e2350, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146907

RESUMO

BACKGROUND: Haploinsufficiency of the Lysine Methyltransferase 2C (KMT2C) gene results in the autosomal dominant disorder, Kleefstra syndrome 2. It is an extremely rare neurodevelopmental condition, with 14 previous reports describing varied clinical manifestations including dysmorphic features, delayed psychomotor development and delayed growth. METHODS: Here, we describe a female with global developmental delay, attention deficit disorder, dyspraxia, short stature and subtle non-specific dysmorphic features. To identify causative mutations, whole exome sequencing was performed on the proband and her younger brother with discrete clinical presentation. RESULTS: Whole exome sequencing identified a novel de novo heterozygous 11 bp deletion in KMT2C (c.1759_1769del), resulting in a frameshift mutation and early termination of the protein (p.Gln587SerfsTer7). This variant is the second-most N-terminal reported mutation, located 4171 amino acids upstream of the critical enzymatically active SET domain (required for chromatin modification and histone methylation). CONCLUSION: The majority of the other reported mutations are frameshift mutations upstream of the SET domain and are predicted to result in protein truncation. It is thought that truncation of the SET domain, results functionally in an inability to modify chromatin through histone methylation. This report expands the clinical and genetic characterisation of Kleefstra syndrome 2.


Assuntos
Deleção Cromossômica , Anormalidades Craniofaciais , Cardiopatias Congênitas , Histonas , Deficiência Intelectual , Feminino , Humanos , Masculino , Pareamento de Bases , Cromatina , Cromossomos Humanos Par 9 , Histonas/genética , Deficiência Intelectual/genética
20.
Br J Pharmacol ; 181(17): 3118-3135, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38710660

RESUMO

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) remains a major public health concern worldwide with unmet effective treatment. Stimulator of interferon genes (STING) and its downstream type-I interferon (IFN) signalling are now appreciated to be involved in TBI pathogenesis. Compelling evidence have shown that STING and type-I IFNs are key in mediating the detrimental neuroinflammatory response after TBI. Therefore, pharmacological inhibition of STING presents a viable therapeutic opportunity in combating the detrimental neuroinflammatory response after TBI. EXPERIMENTAL APPROACH: This study investigated the neuroprotective effects of the small-molecule STING inhibitor n-(4-iodophenyl)-5-nitrofuran-2-carboxamide (C-176) in the controlled cortical impact mouse model of TBI in 10- to 12-week-old male mice. Thirty minutes post-controlled cortical impact surgery, a single 750-nmol dose of C-176 or saline (vehicle) was administered intravenously. Analysis was conducted 2 h and 24 h post-TBI. KEY RESULTS: Mice administered C-176 had significantly smaller cortical lesion area when compared to vehicle-treated mice 24 h post-TBI. Quantitative temporal gait analysis conducted using DigiGait™ showed C-176 administration attenuated TBI-induced impairments in gait symmetry, stride frequency and forelimb stance width. C-176-treated mice displayed a significant reduction in striatal gene expression of pro-inflammatory cytokines Tnf-α, Il-1ß and Cxcl10 compared to their vehicle-treated counterparts 2 h post-TBI. CONCLUSION AND IMPLICATIONS: This study demonstrates the neuroprotective activity of C-176 in ameliorating acute neuroinflammation and preventing white matter neurodegeneration post-TBI. This study highlights the therapeutic potential of small-molecule inhibitors targeting STING for the treatment of trauma-induced inflammation and neuroprotective potential.


Assuntos
Lesões Encefálicas Traumáticas , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Masculino , Camundongos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA