Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 168(4): 370-380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36786545

RESUMO

Millions of individuals globally suffer from inadvertent, occupational or self-harm exposures from organophosphate (OP) insecticides, significantly impacting human health. Similar to nerve agents, insecticides are neurotoxins that target and inhibit acetylcholinesterase (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with an oxime to reactivate the OP-inhibited AChE. However, animal model studies and recent clinical trials using insecticide-poisoned individuals have shown minimal clinical benefits of the currently approved oximes and their efficacy as antidotes has been debated. Currently used oximes either reactivate poorly, do not readily cross the blood-brain barrier (BBB), or are rapidly cleared from the circulation and must be repeatedly administered. Zwitterionic oximes of unbranched and simplified structure, for example RS194B, have been developed that efficiently cross the BBB resulting in reactivation of OP-inhibited AChE and dramatic reversal of severe clinical symptoms in mice and macaques exposed to OP insecticides or nerve agents. Thus, a single IM injection of RS194B has been shown to rapidly restore blood AChE and butyrylcholinesterase (BChE) activity, reverse cholinergic symptoms, and prevent death in macaques following lethal inhaled sarin and paraoxon exposure. The present macaque studies extend these findings and assess the ability of post-exposure RS194B treatment to counteract oral poisoning by highly toxic diethylphosphorothioate insecticides such as parathion and chlorpyrifos. These OPs require conversion by P450 in the liver of the inactive thions to the active toxic oxon forms, and once again demonstrated RS194B efficacy to reactivate and alleviate clinical symptoms within 60 mins of a single IM administration. Furthermore, when delivered orally, the Tmax of RS194B at 1-2 h was in the same range as those administered IM but were maintained in the circulation for longer periods greatly facilitating the use of RS194B as a non-invasive treatment, especially in isolated rural settings.


Assuntos
Acetamidas , Clorpirifos , Reativadores da Colinesterase , Inseticidas , Agentes Neurotóxicos , Paration , Animais , Camundongos , Acetilcolinesterase/química , Butirilcolinesterase/química , Clorpirifos/toxicidade , Inibidores da Colinesterase/química , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Inseticidas/toxicidade , Macaca , Compostos Organofosforados/toxicidade , Oximas/farmacologia , Oximas/química , Oximas/uso terapêutico , Paration/efeitos adversos , Paration/toxicidade
2.
Annu Rev Pharmacol Toxicol ; 61: 25-46, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33411578

RESUMO

Herein, I intend to capture highlights shared with my academic and research colleagues over the 60 years I devoted initially to my graduate and postdoctoral training and then to academic endeavors starting as an assistant professor in a new medical school at the University of California, San Diego (UCSD). During this period, the Department of Pharmacology emerged from a division within the Department of Medicine to become the first basic science department, solely within the School of Medicine at UCSD in 1979. As part of the school's plans to reorganize and to retain me at UCSD, I was appointed as founding chair. Some years later in 2002, faculty, led largely within the Department of Pharmacology and by practicing pharmacists within UCSD Healthcare, started the independent Skaggs School of Pharmacy and Pharmaceutical Sciences with a doctor of pharmacy (PharmD) program, where I served as the founding dean. My career pathway, from working at my family-owned pharmacy to chairing a department in a school of medicine and then becoming the dean of a school of pharmacy at a research-intensive, student-centered institution, involved some risky decisions. But the academic, curricular, and accreditation challenges posed were met by a cadre of creative faculty colleagues. I offer my experiences to individuals confronted with a multiplicity of real or imagined opportunities in academic health sciences, the related pharmaceutical industry, and government oversight agencies.


Assuntos
Colinérgicos , Cápsulas , Humanos
3.
Mar Drugs ; 22(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667766

RESUMO

Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.


Assuntos
Iminas , Toxinas Marinhas , Antagonistas Nicotínicos , Receptores Nicotínicos , Toxinas Marinhas/química , Toxinas Marinhas/farmacologia , Toxinas Marinhas/toxicidade , Iminas/química , Iminas/farmacologia , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Animais , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/química , Relação Estrutura-Atividade
4.
J Biol Chem ; 297(3): 101007, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34324828

RESUMO

Acetylcholinesterase (EC 3.1.1.7), a key acetylcholine-hydrolyzing enzyme in cholinergic neurotransmission, is present in a variety of states in situ, including monomers, C-terminally disulfide-linked homodimers, homotetramers, and up to three tetramers covalently attached to structural subunits. Could oligomerization that ensures high local concentrations of catalytic sites necessary for efficient neurotransmission be affected by environmental factors? Using small-angle X-ray scattering (SAXS) and cryo-EM, we demonstrate that homodimerization of recombinant monomeric human acetylcholinesterase (hAChE) in solution occurs through a C-terminal four-helix bundle at micromolar concentrations. We show that diethylphosphorylation of the active serine in the catalytic gorge or isopropylmethylphosphonylation by the RP enantiomer of sarin promotes a 10-fold increase in homodimer dissociation. We also demonstrate the dissociation of organophosphate (OP)-conjugated dimers is reversed by structurally diverse oximes 2PAM, HI6, or RS194B, as demonstrated by SAXS of diethylphosphoryl-hAChE. However, binding of oximes to the native ligand-free hAChE, binding of high-affinity reversible ligands, or formation of an SP-sarin-hAChE conjugate had no effect on homodimerization. Dissociation monitored by time-resolved SAXS occurs in milliseconds, consistent with rates of hAChE covalent inhibition. OP-induced dissociation was not observed in the SAXS profiles of the double-mutant Y337A/F338A, where the active center gorge volume is larger than in wildtype hAChE. These observations suggest a key role of the tightly packed acyl pocket in allosterically triggered OP-induced dimer dissociation, with the potential for local reduction of acetylcholine-hydrolytic power in situ. Computational models predict allosteric correlated motions extending from the acyl pocket toward the four-helix bundle dimerization interface 25 Å away.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Organofosfatos/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Regulação Alostérica , Domínio Catalítico , Cromatografia em Gel , Microscopia Crioeletrônica , Dimerização , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Fosforilação , Espalhamento a Baixo Ângulo , Estereoisomerismo , Difração de Raios X
5.
J Pharmacol Exp Ther ; 383(2): 157-171, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279397

RESUMO

A series of dipicolyl amine pyrimidines (DPPs) were previously identified as potential α7 agonists by means of a calcium influx assay in the presence of the positive allosteric modulator (PAM) 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596). The compounds lack the quaternary or strongly basic nitrogens of typical nicotinic agonists. Although differing in structure from typical nicotinic agonists, based on crystallographic data with the acetylcholine binding protein, they appeared to engage the site shared by such typical orthosteric agonists. Using oocytes expressing human α7 receptors, we found that the DPPs were efficacious activators of the receptor, with currents showing rapid desensitization characteristic of α7 receptors. However, we note that the rate of recovery from this desensitization depends strongly on structural features within the DPP family. Although the activation of receptors by DPP was blocked by the competitive antagonist methyllycaconitine (MLA), MLA had no effect on the DPP-induced desensitization, suggesting multiple modes of DPP binding. As expected, the desensitized conformational states could be reactivated by PAMs. Mutants made insensitive to acetylcholine by the C190A mutation in the agonist binding site were weakly activated by DPPs. The observation that activation of C190A mutants by the DPP compounds was resistant to the allosteric antagonist (-)cis-trans-4-(2,3,5,6-tetramethylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide supports the hypothesis that the activity of these noncanonical agonists in the orthosteric binding sites was not entirely dependent on the classic epitopes controlling activation by typical agonists and that perhaps they may access alternative modes for promoting the conformational changes associated with activation and desensitization. SIGNIFICANCE STATEMENT: This study reports a family of nicotinic acetylcholine receptor agonists that break the rules about what the structure of a nicotinic acetylcholine receptor agonist should be. It shows that the activity of these noncanonical agonists in the orthosteric binding sites is not dependent on the classical epitopes controlling activation by typical agonists and that through different binding poses, they promote unique conformational changes associated with receptor activation and desensitization.


Assuntos
Quinolinas , Receptores Nicotínicos , Animais , Humanos , Agonistas Nicotínicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Acetilcolina/farmacologia , Regulação Alostérica , Cálcio/metabolismo , Xenopus laevis , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Pirimidinas , Epitopos , Receptores Nicotínicos/metabolismo
6.
Mar Drugs ; 20(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35049904

RESUMO

Nereistoxin (NTX) is a marine toxin isolated from an annelid worm that lives along the coasts of Japan. Its insecticidal properties were discovered decades ago and this stimulated the development of a variety of insecticides such as Cartap that are readily transformed into NTX. One unusual feature of NTX is that it is a small cyclic molecule that contains a disulfide bond. In spite of its size, it acts as an antagonist at insect and mammalian nicotinic acetylcholine receptors (nAChRs). The functional importance of the disulfide bond was assessed by determining the effects of inserting a methylene group between the two sulfur atoms, creating dimethylaminodithiane (DMA-DT). We also assessed the effect of methylating the NTX and DMA-DT dimethylamino groups on binding to three vertebrate nAChRs. Radioligand receptor binding experiments were carried out using washed membranes from rat brain and fish (Torpedo) electric organ; [3H]-cytisine displacement was used to assess binding to the predominantly high affinity alpha4beta2 nAChRs and [125I]-alpha-bungarotoxin displacement was used to measure binding of NTX and analogs to the alpha7 and skeletal muscle type nAChRs. While the two quaternary nitrogen analogs, relative to their respective tertiary amines, displayed lower α4ß2 nAChR binding affinities, both displayed much higher affinities for the Torpedo muscle nAChR and rat alpha7 brain receptors than their respective tertiary amine forms. The binding affinities of DMA-DT for the three nAChRs were lower than those of NTX and MeNTX. An AChBP mutant lacking the C loop disulfide bond that would potentially react with the NTX disulfide bond displayed an NTX affinity very similar to the parent AChBP. Inhibition of [3H]-epibatidine binding to the AChBPs was not affected by exposure to NTX or MeNTX for up to 24 hr prior to addition of the radioligand. Thus, the disulfide bond of NTX is not required to react with the vicinal disulfide in the AChBP C loop for inhibition of [3H]-epibatidine binding. However, a reversible disulfide interchange reaction of NTX with nAChRs might still occur, especially under reducing conditions. Labeled MeNTX, because it can be readily prepared with high specific radioactivity and possesses relatively high affinity for the nAChR-rich Torpedo nAChR, would be a useful probe to detect and identify any nereistoxin adducts.


Assuntos
Anelídeos , Inseticidas/farmacologia , Toxinas Marinhas/farmacologia , Acetilcolina/metabolismo , Animais , Organismos Aquáticos , Peixes , Inseticidas/química , Japão , Toxinas Marinhas/química , Ratos , Receptores Nicotínicos/metabolismo
7.
J Biol Chem ; 295(13): 4079-4092, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32019865

RESUMO

Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime-based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation. Improvements of OP antidotes need to include much better access of AChE reactivators to the CNS and optimized orientation of the antidotes' nucleophile within the AChE active-center gorge. On the basis of X-ray structures of a CNS-penetrating reactivator, monoxime RS194B, reversibly bound to native and venomous agent X (VX)-inhibited human AChE, here we created seven uncharged acetamido bis-oximes as candidate antidotes. Both oxime groups in these bis-oximes were attached to the same central, saturated heterocyclic core. Diverse protonation of the heterocyclic amines and oxime groups of the bis-oximes resulted in equilibration among up to 16 distinct ionization forms, including uncharged forms capable of diffusing into the CNS and multiple zwitterionic forms optimal for reactivation reactions. Conformationally diverse zwitterions that could act as structural antidote variants significantly improved in vitro reactivation of diverse OP-human AChE conjugates. Oxime group reorientation of one of the bis-oximes, forcing it to point into the active center for reactivation, was confirmed by X-ray structural analysis. Our findings provide detailed structure-activity properties of several CNS-directed, uncharged aliphatic bis-oximes holding promise for use as protonation-dependent, conformationally adaptive, "smart" accelerated antidotes against OP toxicity.


Assuntos
Acetilcolinesterase/química , Antídotos/química , Sistema Nervoso Central/efeitos dos fármacos , Inibidores da Colinesterase/química , Reativadores da Colinesterase/química , Acetamidas/química , Acetamidas/uso terapêutico , Antídotos/síntese química , Antídotos/uso terapêutico , Sistema Nervoso Central/enzimologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/síntese química , Reativadores da Colinesterase/uso terapêutico , Cristalografia por Raios X , Humanos , Cinética , Organofosfatos/química , Organofosfatos/toxicidade , Compostos Organofosforados/química , Compostos Organofosforados/toxicidade , Oximas/síntese química , Oximas/química , Oximas/farmacologia , Oximas/uso terapêutico , Conformação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
8.
J Neurochem ; 158(6): 1217-1222, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33638151

RESUMO

We detail here distinctive departures from lead classical cholinesterase re-activators, the pyridinium aldoximes, to achieve rapid CNS penetration and reactivation of AChE in the CNS (brain and spinal cord). Such reactivation is consistent with these non-canonical re-activators enhancing survival parameters in both mice and macaques following exposure to organophosphates. Thus, the ideal cholinesterase re-activator should show minimal toxicity, limited inhibitory activity in the absence of an organophosphate, and rapid CNS penetration, in addition to its nucleophilic potential at the target, the conjugated AChE active center. These are structural properties directed to reactivity profiles at the conjugated AChE active center, reinforced by the pharmacokinetic and tissue disposition properties of the re-activator leads. In the case of nicotinic acetylcholine receptor (nAChR) agonists and antagonists, with the many existing receptor subtypes in mammals, we prioritize subtype selectivity in their design. In contrast to nicotine and its analogues that react with panoply of AChR subtypes, the substituted di-2-picolyl amine pyrimidines possess distinctive ionization characteristics reflecting in selectivity for the orthosteric site at the α7 subtypes of receptor. Here, entry to the CNS should be prioritized for the therapeutic objectives of the nicotinic agent influencing aberrant CNS activity in development or in the sequence of CNS ageing (longevity) in mammals, along with general peripheral activities controlling inflammation.


Assuntos
Acetilcolinesterase/química , Reativadores da Colinesterase/química , Desenho de Fármacos , Agonistas Nicotínicos/química , Antagonistas Nicotínicos/química , Receptores Nicotínicos/química , Acetilcolinesterase/metabolismo , Animais , Reativadores da Colinesterase/metabolismo , Humanos , Ligantes , Agonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Nicotínicos/metabolismo
9.
J Pharmacol Exp Ther ; 378(3): 315-321, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34145064

RESUMO

Inhibition of acetylcholinesterase (AChE) by certain organophosphates (OPs) can be life-threatening and requires reactivating antidote accessibility to the peripheral and central nervous systems to reverse symptoms and enhance survival parameters. In considering dosing requirements for oxime antidotes in OP exposures that inactivate AChE, clearance of proton ionizable, zwitterionic antidotes is rapid and proceeds with largely the parent antidotal compound being cleared by renal transporters. Such transporters may also control disposition between target tissues and plasma as well as overall elimination from the body. An ideal small-molecule antidote should access and be retained in primary target tissues-central nervous system (brain), skeletal muscle, and peripheral autonomic sites-for sufficient periods to reactivate AChE and prevent acute toxicity. We show here that we can markedly prolong the antidotal activity of zwitterionic antidotes by inhibiting P-glycoprotein (P-gp) transporters in the brain capillary and renal systems. We employ the P-gp inhibitor tariquidar as a reference compound and show that tissue and plasma levels of RS194B, a hydroxyl-imino acetamido alkylamine reactivator, are elevated and that plasma clearances are reduced. To examine the mechanism, identify the transporter, and establish the actions of a transport inhibitor, we compare the pharmacokinetic parameters in a P-glycoprotein knockout mouse strain and see dramatic enhancements of short-term plasma and tissue levels. Hence, repurposed transport inhibitors that are candidate or Food and Drug Administration-approved drugs, should enhance target tissue concentrations of the zwitterionic antidote through inhibition of both renal elimination and brain capillary extrusion. SIGNIFICANCE STATEMENT: We examine renal and brain capillary transporter inhibition as means for lowering dose and frequency of dosing of a blood-brain barrier permanent reactivating antidote, RS194B, an ionizable zwitterion. Through a small molecule, tariquidar, and gene knockout mice, CNS antidote concentrations are enhanced, and total body clearances are concomitantly diminished. RS194B with repurposed transport inhibitors should enhance reactivation of central and peripheral OP-inhibited acetylcholinesterase. Activities at both disposition sites are a desired features for replacing the antidote, pralidoxime, for acute OP exposure.


Assuntos
Acetilcolinesterase , Cinética , Organofosfatos , Compostos de Pralidoxima
10.
J Biol Chem ; 294(27): 10607-10618, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31138650

RESUMO

Exposure to organophosphorus compounds (OPs) may be fatal if untreated, and a clear and present danger posed by nerve agent OPs has become palpable in recent years. OPs inactivate acetylcholinesterase (AChE) by covalently modifying its catalytic serine. Inhibited AChE cannot hydrolyze the neurotransmitter acetylcholine leading to its build-up at the cholinergic synapses and creating an acute cholinergic crisis. Current antidotes, including oxime reactivators that attack the OP-AChE conjugate to free the active enzyme, are inefficient. Better reactivators are sought, but their design is hampered by a conformationally rigid portrait of AChE extracted exclusively from 100K X-ray crystallography and scarcity of structural knowledge on human AChE (hAChE). Here, we present room temperature X-ray structures of native and VX-phosphonylated hAChE with an imidazole-based oxime reactivator, RS-170B. We discovered that inhibition with VX triggers substantial conformational changes in bound RS-170B from a "nonproductive" pose (the reactive aldoxime group points away from the VX-bound serine) in the reactivator-only complex to a "semi-productive" orientation in the VX-modified complex. This observation, supported by concurrent molecular simulations, suggested that the narrow active-site gorge of hAChE may be significantly more dynamic than previously thought, allowing RS-170B to reorient inside the gorge. Furthermore, we found that small molecules can bind in the choline-binding site hindering approach to the phosphorous of VX-bound serine. Our results provide structural and mechanistic perspectives on the reactivation of OP-inhibited hAChE and demonstrate that structural studies at physiologically relevant temperatures can deliver previously overlooked insights applicable for designing next-generation antidotes.


Assuntos
Acetilcolinesterase/química , Compostos Organotiofosforados/química , Oximas/química , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Sítios de Ligação , Domínio Catalítico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Cristalografia por Raios X , Teoria da Densidade Funcional , Humanos , Simulação de Dinâmica Molecular , Compostos Organotiofosforados/metabolismo , Oximas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura
11.
Toxicol Appl Pharmacol ; 372: 40-46, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30978400

RESUMO

Tabun represents the phosphoramidate class of organophosphates that are covalent inhibitors of acetylcholinesterase (AChE), an essential enzyme in neurotransmission. Currently used therapy in counteracting excessive cholinergic stimulation consists of a muscarinic antagonist (atropine) and an oxime reactivator of inhibited AChE, but the classical oximes are particularly ineffective in counteracting tabun exposure. In a recent publication (Kovarik et al., 2019), we showed that several oximes prepared by the Huisgen 1,3 dipolar cycloaddition and related precursors efficiently reactivate the tabun-AChE conjugate. Herein, we pursue the antidotal question further and examine a series of lead precursor molecules, along with triazole compounds, as reactivators of two AChE mutant enzymes. Such studies should reveal structural subtleties that reside within the architecture of the active center gorge of AChE and uncover intimate mechanisms of reactivation of alkylphosphate conjugates of AChE. The designated mutations appear to minimize steric constraints of the reactivating oximes within the impacted active center gorge. Indeed, after initial screening of the triazole oxime library and its precursors for the reactivation efficacy on Y337A and Y337A/F338A human AChE mutants, we found potentially active oxime-mutant enzyme pairs capable of degrading tabun in cycles of inhibition and reactivation. Surprisingly, the most sensitive ex vivo reactivation of mutant AChEs occurred with the alkylpyridinium aldoximes. Hence, although the use of mutant enzyme bio-scavengers in humans may be limited in practicality, bioscavenging and efficient neutralization of tabun itself or phosphoramidate mixtures of organophosphates might be achieved efficiently in vitro or ex vivo with these mutant AChE combinations.


Assuntos
Antídotos/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Organofosfatos/toxicidade , Oximas/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Antídotos/química , Butirilcolinesterase/sangue , Butirilcolinesterase/química , Domínio Catalítico , Reativadores da Colinesterase/química , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Mutação , Oximas/química , Conformação Proteica , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
12.
Chemistry ; 25(16): 4100-4114, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30458057

RESUMO

Acetylcholinesterase (AChE), an enzyme that degrades the neurotransmitter acetylcholine, when covalently inhibited by organophosphorus compounds (OPs), such as nerve agents and pesticides, can be reactivated by oximes. However, tabun remains among the most dangerous nerve agents due to the low reactivation efficacy of standard pyridinium aldoxime antidotes. Therefore, finding an optimal reactivator for prophylaxis against tabun toxicity and for post-exposure treatment is a continued challenge. In this study, we analyzed the reactivation potency of 111 novel nucleophilic oximes mostly synthesized using the CuAAC triazole ligation between alkyne and azide building blocks. We identified several oximes with significantly improved in vitro reactivating potential for tabun-inhibited human AChE, and in vivo antidotal efficacies in tabun-exposed mice. Our findings offer a significantly improved platform for further development of antidotes and scavengers directed against tabun and related phosphoramidate exposures, such as the Novichok compounds.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Organofosfatos/toxicidade , Oximas/farmacocinética , Triazóis/química , Alcinos/química , Animais , Antibioticoprofilaxia/métodos , Antídotos/metabolismo , Azidas/química , Catálise , Cobre/química , Feminino , Cinética , Camundongos , Estrutura Molecular , Organofosfatos/síntese química , Compostos Organofosforados/metabolismo , Oximas/administração & dosagem , Oximas/efeitos adversos
13.
J Pharmacol Exp Ther ; 367(2): 363-372, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30190337

RESUMO

In the development of antidotal therapy for treatment of organophosphate exposure from pesticides used in agriculture and nerve agents insidiously employed in terrorism, the alkylpyridinium aldoximes have received primary attention since their early development by I. B. Wilson in the 1950s. Yet these agents, by virtue of their quaternary structure, are limited in rates of crossing the blood-brain barrier, and they require administration parenterally to achieve full distribution in the body. Oximes lacking cationic charges or presenting a tertiary amine have been considered as alternatives. Herein, we examine the pharmacokinetic properties of a lead ionizable, zwitterionic hydroxyiminoacetamido alkylamine in mice to develop a framework for studying these agents in vivo and generate sufficient data for their consideration as appropriate antidotes for humans. Consequently, in vitro and in vivo efficacies of immediate structural congeners were explored as leads or backups for animal studies. We compared oral and parenteral dosing, and we developed an intramuscular loading and oral maintenance dosing scheme in mice. Steady-state plasma and brain levels of the antidote were achieved with sequential administrations out to 10 hours, with brain levels exceeding plasma levels shortly after administration. Moreover, the zwitterionic oxime showed substantial protection after gavage, whereas the classic methylpyridinium aldoxime (2-pyridinealdoxime methiodide) was without evident protection. Although further studies in other animal species are necessary, ionizing zwitterionic aldoximes present viable alternatives to existing antidotes for prophylaxis and treatment of large numbers of individuals in terrorist-led events with nerve agent organophosphates, such as sarin, and in organophosphate pesticide exposure.


Assuntos
Antídotos/farmacologia , Antídotos/farmacocinética , Intoxicação por Organofosfatos/tratamento farmacológico , Organofosfatos/efeitos adversos , Administração Oral , Animais , Encéfalo/efeitos dos fármacos , Feminino , Chumbo/efeitos adversos , Masculino , Camundongos , Agentes Neurotóxicos/efeitos adversos , Compostos Organofosforados/efeitos adversos , Oximas/farmacocinética , Oximas/farmacologia , Praguicidas/efeitos adversos , Distribuição Tecidual
14.
Arch Toxicol ; 92(3): 1161-1176, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29167930

RESUMO

The asexual freshwater planarian Dugesia japonica has emerged as a medium-throughput alternative animal model for neurotoxicology. We have previously shown that D. japonica are sensitive to organophosphorus pesticides (OPs) and characterized the in vitro inhibition profile of planarian cholinesterase (DjChE) activity using irreversible and reversible inhibitors. We found that DjChE has intermediate features of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Here, we identify two candidate genes (Djche1 and Djche2) responsible for DjChE activity. Sequence alignment and structural homology modeling with representative vertebrate AChE and BChE sequences confirmed our structural predictions, and show that both DjChE enzymes have intermediate sized catalytic gorges and disrupted peripheral binding sites. Djche1 and Djche2 were both expressed in the planarian nervous system, as anticipated from previous activity staining, but with distinct expression profiles. To dissect how DjChE inhibition affects planarian behavior, we acutely inhibited DjChE activity by exposing animals to either an OP (diazinon) or carbamate (physostigmine) at 1 µM for 4 days. Both inhibitors delayed the reaction of planarians to heat stress. Simultaneous knockdown of both Djche genes by RNAi similarly resulted in a delayed heat stress response. Furthermore, chemical inhibition of DjChE activity increased the worms' ability to adhere to a substrate. However, increased substrate adhesion was not observed in Djche1/Djche2 (RNAi) animals or in inhibitor-treated day 11 regenerates, suggesting this phenotype may be modulated by other mechanisms besides ChE inhibition. Together, our study characterizes DjChE expression and function, providing the basis for future studies in this system to dissect alternative mechanisms of OP toxicity.


Assuntos
Colinesterases/genética , Colinesterases/metabolismo , Resposta ao Choque Térmico/fisiologia , Planárias/fisiologia , Animais , Inibidores da Colinesterase/farmacologia , Colinesterases/química , Diazinon/farmacologia , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Resposta ao Choque Térmico/efeitos dos fármacos , Sistema Nervoso/enzimologia , Fisostigmina/farmacologia , Planárias/efeitos dos fármacos , Conformação Proteica
15.
J Am Chem Soc ; 139(10): 3676-3684, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28221788

RESUMO

Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4ß2-nAChR, and a serotonin receptor (5-HT3AR), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 µM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC50 values of 70 nM and Kd values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4ß2-nAChR or 5-HT3AR at concentrations up to 10 µM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.


Assuntos
Acetilcolina/metabolismo , Proteínas de Transporte/metabolismo , Pirimidinas/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolina/química , Proteínas de Transporte/química , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Pirimidinas/química , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/isolamento & purificação
16.
J Neurochem ; 142 Suppl 2: 41-51, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28326551

RESUMO

We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Assuntos
Acetilcolina/antagonistas & inibidores , Dinoflagellida/efeitos dos fármacos , Iminas/toxicidade , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Toxinas Biológicas/farmacologia , Animais , Dinoflagellida/isolamento & purificação , Humanos , Receptores Nicotínicos/efeitos dos fármacos , Toxinas Biológicas/metabolismo
17.
Arch Toxicol ; 91(2): 909-919, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26838044

RESUMO

Multiple epidemiological and experimental studies have demonstrated that exposure to organophosphorus compounds (OPs) is associated with a variety of neurological disorders. Some of these exposure symptoms cannot be precisely correlated with known molecular targets and mechanisms of toxicity. Most of the known molecular targets of OPs fall in the protein family of serine esterases. We have shown that three esterase components in the soluble fraction of chicken brain (an animal model frequently used in OP neurotoxicity assays) can be kinetically distinguished using paraoxon, mipafox and phenylmethyl sulfonyl fluoride as inhibitors, and phenyl valerate as a substrate; we termed them Eα, Eß and Eγ. The Eα-component, which is highly sensitive to paraoxon and mipafox and resistant to PMSF, has shown sensitivity to the substrate acetylthiocholine, and to ethopropazine and iso-OMPA (specific inhibitors of butyrylcholinesterase; BChE) but not to BW 284C51 (a specific inhibitor of acetylcholinesterase; AChE). In this work, we employed a large-scale proteomic analysis B with a LC/MS/MS TripleTOF system; 259 proteins were identified in a chromatographic fractionated sample enriched in Eα activity of the chicken brain soluble fraction. Bioinformatics analysis revealed that BChE is the only candidate protein identified to be responsible for almost all the Eα activity. This study demonstrates the potential information to be gained from combining kinetic dissection with large-scale proteomics and bioinformatics analyses for identification of proteins that are targets of OP toxicity and may be involved in detoxification of phosphoryl and carbonyl esters.


Assuntos
Encéfalo/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Isoflurofato/análogos & derivados , Animais , Encéfalo/metabolismo , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Galinhas , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Relação Dose-Resposta a Droga , Isoflurofato/administração & dosagem , Isoflurofato/toxicidade , Fenotiazinas/farmacologia , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
18.
Arch Toxicol ; 91(8): 2837-2847, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27990564

RESUMO

The freshwater planarian Dugesia japonica has recently emerged as an animal model for developmental neurotoxicology and found to be sensitive to organophosphorus (OP) pesticides. While previous activity staining of D. japonica, which possess a discrete cholinergic nervous system, has shown acylthiocholine catalysis, it is unknown whether this is accomplished through an acetylcholinesterase (AChE), butyrylcholinesterase (BChE), or a hybrid esterase and how OP exposure affects esterase activity. Here, we show that the majority of D. japonica cholinesterase (DjChE) activity departs from conventional AChE and BChE classifications. Inhibition by classic protonable amine and quaternary reversible inhibitors (ethopropazine, donepezil, tacrine, edrophonium, BW284c51, propidium) shows that DjChE is far less sensitive to these inhibitors than human AChE, suggesting discrete differences in active center and peripheral site recognition and structures. Additionally, we find that different OPs (chlorpyrifos oxon, paraoxon, dichlorvos, diazinon oxon, malaoxon) and carbamylating agents (carbaryl, neostigmine, physostigmine, pyridostigmine) differentially inhibit DjChE activity in vitro. DjChE was most sensitive to diazinon oxon and neostigmine and least sensitive to malaoxon and carbaryl. Diazinon oxon-inhibited DjChE could be reactivated by the quaternary oxime, pralidoxime (2-PAM), and the zwitterionic oxime, RS194B, with RS194B being significantly more potent. Sodium fluoride (NaF) reactivates OP-DjChE faster than 2-PAM. As one of the most ancient true cholinesterases, DjChE provides insight into the evolution of a hybrid enzyme before the separation into distinct AChE and BChE enzymes found in higher vertebrates. The sensitivity of DjChE to OPs and capacity for reactivation validate the use of planarians for OP toxicology studies.


Assuntos
Inibidores da Colinesterase/farmacologia , Colinesterases/metabolismo , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/metabolismo , Reativadores da Colinesterase/farmacologia , Humanos , Técnicas In Vitro , Modelos Animais , Planárias , Especificidade da Espécie
19.
Proc Natl Acad Sci U S A ; 111(29): 10749-54, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25006260

RESUMO

The nicotinic acetylcholine receptor (nAChR) and the acetylcholine binding protein (AChBP) are pentameric oligomers in which binding sites for nicotinic agonists and competitive antagonists are found at selected subunit interfaces. The nAChR spontaneously exists in multiple conformations associated with its activation and desensitization steps, and conformations are selectively stabilized by binding of agonists and antagonists. In the nAChR, agonist binding and the associated conformational changes accompanying activation and desensitization are cooperative. AChBP, which lacks the transmembrane spanning and cytoplasmic domains, serves as a homology model of the extracellular domain of the nAChRs. We identified unique cooperative binding behavior of a number of 4,6-disubstituted 2-aminopyrimidines to Lymnaea AChBP, with different molecular variants exhibiting positive, nH > 1.0, and negative cooperativity, nH < 1.0. Therefore, for a distinctive set of ligands, the extracellular domain of a nAChR surrogate suffices to accommodate cooperative interactions. X-ray crystal structures of AChBP complexes with examples of each allowed the identification of structural features in the ligands that confer differences in cooperative behavior. Both sets of molecules bind at the agonist-antagonist site, as expected from their competition with epibatidine. An analysis of AChBP quaternary structure shows that cooperative ligand binding is associated with a blooming or flare conformation, a structural change not observed with the classical, noncooperative, nicotinic ligands. Positively and negatively cooperative ligands exhibited unique features in the detailed binding determinants and poses of the complexes.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Acetilcolina , Animais , Ligação Competitiva , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Piridinas/química , Piridinas/metabolismo , Trítio
20.
J Biol Chem ; 290(40): 24509-18, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276394

RESUMO

α4ß2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4ß2 nAChRs. Using a FRET-based Ca(2+) flux assay, we found that the maximum response of α4ß2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4ß2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4ß2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4ß2 nAChRs, respectively.


Assuntos
Antígenos Ly/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuropeptídeos/metabolismo , Receptores Nicotínicos/metabolismo , Sítio Alostérico , Animais , Biotinilação , Cálcio/química , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lipídeos/química , Camundongos , Nicotina/química , Agonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Ligação Proteica , Transporte Proteico , Fumar/efeitos adversos , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA