Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771923

RESUMO

Phyllotaxis, the distribution of organs such as leaves and flowers on their support, is a key attribute of plant architecture. The geometric regularity of phyllotaxis has attracted multidisciplinary interest for centuries, resulting in an understanding of the patterns in the model plants Arabidopsis and tomato down to the molecular level. Nevertheless, the iconic example of phyllotaxis, the arrangement of individual florets into spirals in the heads of the daisy family of plants (Asteraceae), has not been fully explained. We integrate experimental data and computational models to explain phyllotaxis in Gerbera hybrida We show that phyllotactic patterning in gerbera is governed by changes in the size of the morphogenetically active zone coordinated with the growth of the head. The dynamics of these changes divides the patterning process into three phases: the development of an approximately circular pattern with a Fibonacci number of primordia near the head rim, its gradual transition to a zigzag pattern, and the development of a spiral pattern that fills the head on the template of this zigzag pattern. Fibonacci spiral numbers arise due to the intercalary insertion and lateral displacement of incipient primordia in the first phase. Our results demonstrate the essential role of the growth and active zone dynamics in the patterning of flower heads.


Assuntos
Asteraceae/fisiologia , Inflorescência/crescimento & desenvolvimento , Organogênese Vegetal , Asteraceae/anatomia & histologia , Genes Reporter , Ácidos Indolacéticos/metabolismo , Inflorescência/anatomia & histologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
2.
Plant Cell Physiol ; 64(10): 1204-1219, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37674261

RESUMO

Stilbenes accumulate in Scots pine heartwood where they have important roles in protecting wood from decaying fungi. They are also part of active defense responses, and their production is induced by different (a)biotic stressors. The specific transcriptional regulators as well as the enzyme responsible for activating the stilbene precursor cinnamate in the pathway are still unknown. UV-C radiation was the first discovered artificial stress activator of the pathway. Here, we describe a large-scale transcriptomic analysis of pine needles in response to UV-C and treatment with translational inhibitors, both activating the transcription of stilbene pathway genes. We used the data to identify putative candidates for the missing CoA ligase and for pathway regulators. We further showed that the pathway is transcriptionally activated by phosphatase inhibitor, ethylene and jasmonate treatments, as in grapevine, and that the stilbene synthase promoter retains its inducibility in some of the tested conditions in Arabidopsis, a species that normally does not synthesize stilbenes. Shared features between gymnosperm and angiosperm regulation and partially retained inducibility in Arabidopsis suggest that pathway regulation occurs not only via ancient stress-response pathway(s) but also via species-specific regulators. Understanding which genes control the biosynthesis of stilbenes in Scots pine aids breeding of more resistant trees.


Assuntos
Arabidopsis , Estilbenos , Estilbenos/metabolismo , Transcriptoma , Arabidopsis/genética , Perfilação da Expressão Gênica , Árvores/genética
3.
New Phytol ; 236(1): 296-308, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35719102

RESUMO

Plant polyketides are well-known for their crucial functions in plants and their importance in the context of human health. They are synthesized by type III polyketide synthases (PKSs) and their final functional diversity is determined by post-PKS tailoring enzymes. Gerbera hybrida is rich in two defense-related polyketides: gerberin and parasorboside. Their synthesis is known to be initiated by GERBERA 2-PYRONE SYNTHASE 1 (G2PS1), but the polyketide reductases (PKRs) that determine their final structure have not yet been identified. We identified two PKR candidates in the pathway, GERBERA REDUCTASE 1 (GRED1) and GRED2. Gene expression and metabolite analysis of different gerbera tissues, cultivars, and transgenic gerbera plants, and in vitro enzyme assays, were performed for functional characterization of the enzymes. GRED1 and GRED2 catalyze the second reduction step in parasorboside biosynthesis. They reduce the proximal keto domain of the linear CoA bound intermediate before lactonization. We identified a crucial tailoring step in an important gerbera PKS pathway and show that plant polyketide biosynthesis shares processing strategies with fungi and bacteria. The two tailoring enzymes are recruited from the ancient sporopollenin biosynthetic pathway to a defense-related PKS pathway in gerbera. Our data provide an example of how plants recruit conserved genes to new functions in secondary metabolism that are important for environmental adaptation.


Assuntos
Asteraceae , Policetídeos , Asteraceae/genética , Glucosídeos , Plantas Geneticamente Modificadas/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Pironas
4.
Plant Physiol ; 184(3): 1455-1468, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32900982

RESUMO

The large sunflower family, Asteraceae, is characterized by compressed, flower-like inflorescences that may bear phenotypically distinct flower types. The CYCLOIDEA (CYC)/TEOSINTE BRANCHED1-like transcription factors (TFs) belonging to the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) protein family are known to regulate bilateral symmetry in single flowers. In Asteraceae, they function at the inflorescence level, and were recruited to define differential flower type identities. Here, we identified upstream regulators of GhCYC3, a gene that specifies ray flower identity at the flower head margin in the model plant Gerbera hybrida We discovered a previously unidentified expression domain and functional role for the paralogous CINCINNATA-like TCP proteins. They function upstream of GhCYC3 and affect the developmental delay of marginal ray primordia during their early ontogeny. At the level of single flowers, the Asteraceae CYC genes show a unique function in regulating the elongation of showy ventral ligules that play a major role in pollinator attraction. We discovered that during ligule development, the E class MADS-box TF GRCD5 activates GhCYC3 expression. We propose that the C class MADS-box TF GAGA1 contributes to stamen development upstream of GhCYC3 Our data demonstrate how interactions among and between the conserved floral regulators, TCP and MADS-box TFs, contribute to the evolution of the elaborate inflorescence architecture of Asteraceae.


Assuntos
Asteraceae/crescimento & desenvolvimento , Asteraceae/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética
5.
J Exp Bot ; 71(20): 6379-6395, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32777074

RESUMO

Both the mechanisms of monolignol transport and the transported form of monolignols in developing xylem of trees are unknown. We tested the hypothesis of an active, plasma membrane-localized transport of monolignol monomers, dimers, and/or glucosidic forms with membrane vesicles prepared from developing xylem and lignin-forming tissue-cultured cells of Norway spruce (Picea abies L. Karst.), as well as from control materials, comprising non-lignifying Norway spruce phloem and tobacco (Nicotiana tabacum L.) BY-2 cells. Xylem and BY-2 vesicles transported both coniferin and p-coumaryl alcohol glucoside, but inhibitor assays suggested that this transport was through the tonoplast. Membrane vesicles prepared from lignin-forming spruce cells showed coniferin transport, but the Km value for coniferin was much higher than those of xylem and BY-2 cells. Liquid chromatography-mass spectrometry analysis of membrane proteins isolated from spruce developing xylem, phloem, and lignin-forming cultured cells revealed multiple transporters. These were compared with a transporter gene set obtained by a correlation analysis with a selected set of spruce monolignol biosynthesis genes. Biochemical membrane vesicle assays showed no support for ABC-transporter-mediated monolignol transport but point to a role for secondary active transporters (such as MFS or MATE transporters). In contrast, proteomic and co-expression analyses suggested a role for ABC transporters and MFS transporters.


Assuntos
Picea , Lignina , Noruega , Proteômica , Xilema
6.
New Phytol ; 222(4): 1816-1831, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724367

RESUMO

Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.


Assuntos
Betula/genética , Casca de Planta/química , Casca de Planta/genética , Caules de Planta/genética , Transcriptoma/genética , Betula/crescimento & desenvolvimento , Vias Biossintéticas/genética , Câmbio/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Lipídeos/química , Meristema/genética , Especificidade de Órgãos , Especificidade da Espécie , Nicho de Células-Tronco , Triterpenos/metabolismo , Madeira/genética
7.
Plant Physiol ; 174(3): 1449-1475, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28522458

RESUMO

Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H2O2) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce (Picea abies) was used as a research model. Scavenging of apoplastic H2O2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H2O2-scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H2O2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H2O2 production in addition to potential H2O2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism.


Assuntos
Peróxido de Hidrogênio/metabolismo , Fenóis/metabolismo , Picea/metabolismo , Antioxidantes/metabolismo , Espaço Extracelular/metabolismo , Sequestradores de Radicais Livres/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Lignina/metabolismo , Anotação de Sequência Molecular , Estresse Oxidativo , Picea/genética , Análise de Componente Principal , Transdução de Sinais , Especificidade por Substrato , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcriptoma/genética
8.
Physiol Plant ; 162(2): 219-238, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080293

RESUMO

Plant research and breeding has a long and successful history in the Scandinavian countries, Denmark, Finland, Norway and Sweden. Researchers in the region have been early in adopting plant gene technologies as they developed. This review gives a background, as well as discuss the current and future progress of plant gene technology in these four countries. Country-specific details of the regulation of genetically modified plants are described, as well as similarities and differences in the approach to regulation of novel genome-editing techniques. Also, the development of a sustainable bioeconomy may encompass the application of plant gene technology and we discuss whether or not this is reflected in current associated national strategies. In addition, country-specific information about the opinion of the public and other stakeholders on plant gene technology is presented, together with a country-wise political comparison and a discussion of the potential reciprocal influence between public opinion and the political process of policy development. The Scandinavian region is unique in several aspects, such as climate and certain agriculturally related regulations, and at the same time the region is vulnerable to changes in plant breeding investments due to the relatively small market sizes. It is therefore important to discuss the role and regulation of innovative solutions in Scandinavian plant research and breeding.


Assuntos
Edição de Genes/métodos , Genes de Plantas/genética , Melhoramento Vegetal/métodos , Plantas/genética , Agricultura/legislação & jurisprudência , Agricultura/métodos , Agricultura/tendências , Edição de Genes/legislação & jurisprudência , Edição de Genes/tendências , Plantas/classificação , Plantas Geneticamente Modificadas , Pesquisa/legislação & jurisprudência , Pesquisa/tendências , Países Escandinavos e Nórdicos
9.
Plant J ; 87(6): 548-58, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27227340

RESUMO

Gerbera (Gerbera hybrida) is an economically important ornamental species and a model plant of the Asteraceae family for flower development and secondary metabolism. Gerberin and parasorboside, two bitter tasting glucosidic lactones, are produced in high amounts in nearly all gerbera tissues. Gerbera and its close relatives also produce a rare coumarin, 4-hydroxy-5-methylcoumarin (HMC). Unlike most coumarins, 5-methylcoumarins have been suggested to be derived through the acetate-malonate pathway. All of these polyketide-derived glucosylated molecules are considered to have a role in defense against herbivores and phytopathogens in gerbera. Gerbera expresses three genes encoding 2-pyrone synthases (G2PS1-3). The enzymes are chalcone synthase-like polyketide synthases with altered starter substrate specificity. We have shown previously that G2PS1 is responsible for the synthesis of 4-hydroxy-6-methyl-2-pyrone (triacetolactone), a putative precursor of gerberin and parasorboside. Here we show that polyketide synthases G2PS2 and G2PS3 are necessary for the biosynthesis of HMC in gerbera, and that a reductase enzyme is likely required to complete the pathway to HMC. G2PS2 is expressed in the leaf blade and inflorescences of gerbera, while G2PS3 is strictly root specific. Heterologous expression of G2PS2 or G2PS3 in tobacco leads to the formation of 4,7-dihydroxy-5-methylcoumarin, apparently an unreduced precursor of HMC, while ectopic expression in gerbera leads to HMC formation in tissues where nontransgenic tissue does not express the genes and does not accumulate the compound. Using protein modelling and site-directed mutagenesis we identified the residues I203 and T344 in G2PS2 and G2PS3 to be critical for pentaketide synthase activity.


Assuntos
Asteraceae/metabolismo , Cumarínicos/metabolismo , Proteínas de Plantas/metabolismo , Policetídeo Sintases/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Asteraceae/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Policetídeo Sintases/química , Policetídeo Sintases/genética , Pironas/metabolismo , Nicotiana/genética
10.
Planta ; 246(2): 277-280, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28647812

RESUMO

MAIN CONCLUSION: Unauthorized genetically engineered orange petunias were found on the market. Genetic engineering of petunia was shown to lead to novel flower color some 20 years ago. Here we show that petunia lines with orange flowers, generated for scientific purposes, apparently found their way to petunia breeding programmes, intentionally or unintentionally. Today they are widely available, but have not been registered for commerce.


Assuntos
Oxirredutases do Álcool/genética , Antocianinas/metabolismo , Flores/genética , Petunia/genética , Plantas Geneticamente Modificadas , Oxirredutases do Álcool/metabolismo , Antocianinas/análise , Cruzamento , Flores/enzimologia , Engenharia Genética , Petunia/enzimologia , Pigmentação , Pigmentos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transgenes
11.
New Phytol ; 214(4): 1537-1550, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28248427

RESUMO

Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1.


Assuntos
Metiltransferases/genética , Metiltransferases/metabolismo , Pinus sylvestris/metabolismo , Proteínas de Plantas/metabolismo , Estilbenos/metabolismo , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Metilação , Filogenia , Pinus sylvestris/efeitos da radiação , Proteínas de Plantas/genética , Especificidade por Substrato , Espectrometria de Massas em Tandem , Raios Ultravioleta , Xilema/metabolismo
12.
New Phytol ; 216(3): 939-954, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28742220

RESUMO

The pseudanthial inflorescences of the sunflower family, Asteraceae, mimic a solitary flower but are composed of multiple flowers. Our studies in Gerbera hybrida indicate functional diversification for SEPALLATA (SEP)-like MADS box genes that often function redundantly in other core eudicots. We conducted phylogenetic and expression analysis for eight SEP-like GERBERA REGULATOR OF CAPITULUM DEVELOPMENT (GRCD) genes, including previously unstudied gene family members. Transgenic gerbera plants were used to infer gene functions. Adding to the previously identified stamen and carpel functions for GRCD1 and GRCD2, two partially redundant genes, GRCD4 and GRCD5, were found to be indispensable for petal development. Stepwise conversion of floral organs into leaves in the most severe RNA interference lines suggest redundant and additive GRCD activities in organ identity regulation. We show conserved and redundant functions for several GRCD genes in regulation of flower meristem maintenance, while functional diversification for three SEP1/2/4 clade genes in regulation of inflorescence meristem patterning was observed. GRCD genes show both specialized and pleiotropic functions contributing to organ differentiation and flower meristem fate, and uniquely, to patterning of the inflorescence meristem. Altogether, we provide an example of how plant reproductive evolution has used conserved genetic modules for regulating the elaborate inflorescence architecture in Asteraceae.


Assuntos
Asteraceae/genética , Inflorescência/genética , Proteínas de Plantas/genética , Asteraceae/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Meristema/genética , Família Multigênica , Filogenia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Interferência de RNA
13.
Plant Physiol ; 172(1): 284-96, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27382139

RESUMO

The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems.


Assuntos
Asteraceae/genética , Flores/genética , Genes de Plantas/genética , Inflorescência/genética , Meristema/genética , Asteraceae/crescimento & desenvolvimento , Asteraceae/ultraestrutura , Evolução Molecular , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Inflorescência/crescimento & desenvolvimento , Inflorescência/ultraestrutura , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Microscopia Eletrônica de Varredura , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
14.
Plant Physiol ; 172(3): 1403-1417, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600814

RESUMO

Scots pine (Pinus sylvestris L.) wood is desired in woodworking industries due to its favorable timber characteristics and natural durability that is contributed by heartwood extractives. It has been discussed whether the Scots pine heartwood extractives (mainly stilbenes and resin acids) are synthesized in the cells of the transition zone between sapwood and heartwood, or if they are transported from the sapwood. Timing of heartwood formation during the yearly cycle has also not been unambiguously defined. We measured steady-state mRNA levels in Scots pine transition zone and sapwood using RNA sequencing. Year-round expression profiles of selected transcripts were further investigated by quantitative RT-PCR. Differentially accumulating transcripts suggest that, of the Scots pine heartwood extractives, stilbenes are synthesized in situ in the transition zone and gain their carbon-skeletons from Suc and triglycerides. Resin acids, on the other hand, are synthesized early in the spring mainly in the sapwood, meaning that they must be transported to the heartwood transition zone. Heartwood formation is marked by programmed cell death that occurs during the summer months in the transition zone.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Pinus sylvestris/embriologia , Pinus sylvestris/genética , Transcriptoma/genética , Madeira/genética , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metabolismo Secundário/genética
15.
Plant J ; 79(5): 783-96, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24923429

RESUMO

The complex inflorescences (capitula) of Asteraceae consist of different types of flowers. In Gerbera hybrida (gerbera), the peripheral ray flowers are bilaterally symmetrical and lack functional stamens while the central disc flowers are more radially symmetrical and hermaphroditic. Proteins of the CYC2 subclade of the CYC/TB1-like TCP domain transcription factors have been recruited several times independently for parallel evolution of bilaterally symmetrical flowers in various angiosperm plant lineages, and have also been shown to regulate flower-type identity in Asteraceae. The CYC2 subclade genes in gerbera show largely overlapping gene expression patterns. At the level of single flowers, their expression domain in petals shows a spatial shift from the dorsal pattern known so far in species with bilaterally symmetrical flowers, suggesting that this change in expression may have evolved after the origin of Asteraceae. Functional analysis indicates that GhCYC2, GhCYC3 and GhCYC4 mediate positional information at the proximal-distal axis of the inflorescence, leading to differentiation of ray flowers, but that they also regulate ray flower petal growth by affecting cell proliferation until the final size and shape of the petals is reached. Moreover, our data show functional diversification for the GhCYC5 gene. Ectopic activation of GhCYC5 increases flower density in the inflorescence, suggesting that GhCYC5 may promote the flower initiation rate during expansion of the capitulum. Our data thus indicate that modification of the ancestral network of TCP factors has, through gene duplications, led to the establishment of new expression domains and to functional diversification.


Assuntos
Asteraceae/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Asteraceae/anatomia & histologia , Asteraceae/crescimento & desenvolvimento , DNA de Plantas/química , DNA de Plantas/genética , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Inflorescência/anatomia & histologia , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Família Multigênica , Filogenia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Transgenes , Regulação para Cima
16.
Planta ; 242(3): 747-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26108783

RESUMO

MAIN CONCLUSION: Externally added coniferyl alcohol at high concentrations reduces the growth of Nicotiana cells and seedlings. Coniferyl alcohol is metabolized by BY-2 cells to several compounds. Coniferyl alcohol (CA) is a common monolignol and a building block of lignin. The toxicity of monolignol alcohols has been stated in the literature, but there are only few studies suggesting that this is true. We investigated the physiological effects of CA on living plant cells in more detail. Tobacco (Nicotiana tabacum) Bright yellow-2 cells (BY-2) and Nicotiana benthamiana seedlings both showed concentration-dependent growth retardation in response to 0.5-5 mM CA treatment. In some cases, CA addition caused cell death in BY-2 cultures, but this response was dependent on the growth stage of the cells. Based on LC-MS/MS analysis, BY-2 cells did not accumulate the externally supplemented CA, but metabolized it to ferulic acid, ferulic acid glycoside, coniferin, and to some other phenolic compounds. In addition to growth inhibition, CA caused the formation of a lignin-like compound detected by phloroglucinol staining in N. benthamiana roots and occasionally in BY-2 cells. To prevent this, we added potassium iodide (KI, at 5 mM) to overcome the peroxidase-mediated CA polymerization to lignin. KI had, however, toxic effects on its own: in N. benthamiana seedlings, it caused reduction in growth; in BY-2 cells, reduction in growth and cell viability. Surprisingly, CA restored the growth of KI-treated BY-2 cells and N. benthamiana seedlings. Our results suggest that CA at high concentrations is toxic to plant cells.


Assuntos
Nicotiana/citologia , Fenóis/farmacologia , Plântula/efeitos dos fármacos , Nicotiana/efeitos dos fármacos
17.
Planta ; 242(3): 601-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26093654

RESUMO

MAIN CONCLUSION: Identification of distinct allelic versions for dihydroflavonol 4-reductase in gerbera cultivars reveals that gerbera DFR enzymes have strong substrate preference in vivo that is not reflected to the activity in vitro. Flavonoids in the model ornamental plant Gerbera hybrida consist of flavones, flavonols and anthocyanins. Anthocyanins accumulate in the adaxial epidermis of petals and give the different cultivars their characteristic red and violet colour. Both pelargonidin and cyanidin derivatives are found in gerbera, but none of the cultivars contain delphinidin. 'Ivory', a cultivar with white petals, is a sport of the pelargonidin-containing pink cultivar 'Estelle', i.e. it originates from an acyanic branch of 'Estelle'. In this work, four different alleles encoding dihydroflavonol 4-reductase (DFR) were identified in gerbera cultivars. We found that, in contrast to 'Estelle' with the functional allele GDFR1-2, 'Ivory' carries a mutation in this gene that results in an inactive enzyme. Interestingly, 'Ivory' also expresses a second, nonmutated allele (GDFR1-3) in petal epidermi, leading to extractable DFR activity but not to anthocyanin biosynthesis. The second allele encodes a protein identical in amino acid sequence to the DFR of the cyanidin-containing variety 'President'. Pelargonidin-containing cultivars do not react to the flavonoid 3'-hydroxylase inhibitor tetcyclacis, but cyanidin-containing cultivars lose their colour, instead of starting to synthesise pelargonidins, indicating the specificity of GDFR1-3 for the cyanidin pathway. This explains why petals of 'Ivory' are white, even when it has lost only one of the two enzymatically functional DFR forms, and shows that anthocyanin biosynthesis in gerbera is under more complex regulation than earlier thought.


Assuntos
Antocianinas/metabolismo , Asteraceae/metabolismo , Oxirredutases do Álcool/metabolismo , Asteraceae/enzimologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
J Integr Plant Biol ; 57(4): 341-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25626739

RESUMO

Secondarily thickened cell walls of water-conducting vessels and tracheids and support-giving sclerenchyma cells contain lignin that makes the cell walls water impermeable and strong. To what extent laccases and peroxidases contribute to lignin biosynthesis in muro is under active evaluation. We performed an in silico study of Norway spruce (Picea abies (L.) Karst.) laccases utilizing available genomic data. As many as 292 laccase encoding sequences (genes, gene fragments, and pseudogenes) were detected in the spruce genome. Out of the 112 genes annotated as laccases, 79 are expressed at some level. We isolated five full-length laccase cDNAs from developing xylem and an extracellular lignin-forming cell culture of spruce. In addition, we purified and biochemically characterized one culture medium laccase from the lignin-forming cell culture. This laccase has an acidic pH optimum (pH 3.8-4.2) for coniferyl alcohol oxidation. It has a high affinity to coniferyl alcohol with an apparent Km value of 3.5 µM; however, the laccase has a lower catalytic efficiency (V(max)/K(m)) for coniferyl alcohol oxidation compared with some purified culture medium peroxidases. The properties are discussed in the context of the information already known about laccases/coniferyl alcohol oxidases of coniferous plants.


Assuntos
Lacase/metabolismo , Lignina/biossíntese , Picea/enzimologia , Técnicas de Cultura de Tecidos/métodos , Álcoois/metabolismo , Clonagem Molecular , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Genes de Plantas , Concentração de Íons de Hidrogênio , Cinética , Lacase/genética , Lacase/isolamento & purificação , Oxirredução , Picea/genética , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Análise de Sequência de Proteína
20.
New Phytol ; 201(4): 1469-1483, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24266452

RESUMO

• Chalcone synthase (CHS) is the key enzyme in the first committed step of the flavonoid biosynthetic pathway and catalyzes the stepwise condensation of 4-coumaroyl-CoA and malonyl-CoA to naringenin chalcone. In plants, CHS is often encoded by a small family of genes that are temporally and spatially regulated. Our earlier studies have shown that GCHS4 is highly activated by ectopic expression of an MYB-type regulator GMYB10 in gerbera (Gerbera hybrida). • The tissue- and development-specific expression patterns of three gerbera CHS genes were examined. Virus-induced gene silencing (VIGS) was used to knock down GCHS1 and GCHS4 separately in gerbera inflorescences. • Our data show that GCHS4 is the only CHS encoding gene that is expressed in the cyanidin-pigmented vegetative tissues of gerbera cv Terraregina. GCHS3 expression is pronounced in the pappus bristles of the flowers. Expression of both GCHS1 and GCHS4 is high in the epidermal cells of gerbera petals, but only GCHS1 is contributing to flavonoid biosynthesis. • Gerbera contains a family of three CHS encoding genes showing different spatial and temporal regulation. GCHS4 expression in gerbera petals is regulated post-transcriptionally, at the level of either translation elongation or protein stability.


Assuntos
Aciltransferases/genética , Antocianinas/biossíntese , Asteraceae/enzimologia , Asteraceae/genética , Genes Duplicados/genética , Genes de Plantas/genética , Variação Genética , Aciltransferases/química , Sequência de Aminoácidos , Flores/genética , Flores/crescimento & desenvolvimento , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes Dominantes , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA