Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant Cell ; 36(4): 1119-1139, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38092462

RESUMO

Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Glutâmico , Cloroplastos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Aminoácidos/metabolismo , Folhas de Planta/metabolismo , Nitrogênio/metabolismo
2.
J Exp Bot ; 74(18): 5564-5590, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37478311

RESUMO

The ureides allantoin and allantoate serve as nitrogen (N) transport compounds in plants, and more recently, allantoin has been shown to play a role in signaling. In planta, tissue ureide levels are controlled by the activity of enzymes of the purine degradation pathway and by ureide transporters called ureide permeases (UPS). Little is known about the physiological function of UPS proteins in crop plants, and especially in monocotyledon species. Here, we identified 13 TaUPS genes in the wheat (Triticum aestivum L.) genome. Phylogenetic and genome location analyses revealed a close relationship of wheat UPSs to orthologues in other grasses and a division into TaUPS1, TaUPS2.1, and TaUPS2.2 groups, each consisting of three homeologs, with a total of four tandem duplications. Expression, localization, and biochemical analyses resolved spatio-temporal expression patterns of TaUPS genes, transporter localization at the plasma membrane, and a role for TaUPS2.1 proteins in cellular import of ureides and phloem and seed loading. In addition, positive correlations between TaUPS1 and TaUPS2.1 transcripts and ureide levels were found. Together the data support that TaUPSs function in regulating ureide pools at source and sink, along with source-to-sink transport. Moreover, comparative studies between wheat cultivars grown at low and high N strengthened a role for TaUPS1 and TaUPS2.1 transporters in efficient N use and in controlling primary metabolism. Co-expression, protein-protein interaction, and haplotype analyses further support TaUPS involvement in N partitioning, N use efficiency, and domestication. Overall, this work provides a new understanding on UPS transporters in grasses as well as insights for breeding resilient wheat varieties with improved N use efficiency.


Assuntos
Alantoína , Proteínas de Membrana Transportadoras , Alantoína/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Triticum/genética , Triticum/metabolismo , Nitrogênio/metabolismo , Filogenia , Melhoramento Vegetal
3.
Plant Physiol ; 187(4): 2134-2155, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618032

RESUMO

Grain legumes such as pea (Pisum sativum L.) are highly valued as a staple source of protein for human and animal nutrition. However, their seeds often contain limited amounts of high-quality, sulfur (S) rich proteins, caused by a shortage of the S-amino acids cysteine and methionine. It was hypothesized that legume seed quality is directly linked to the amount of organic S transported from leaves to seeds, and imported into the growing embryo. We expressed a high-affinity yeast (Saccharomyces cerevisiae) methionine/cysteine transporter (Methionine UPtake 1) in both the pea leaf phloem and seed cotyledons and found source-to-sink transport of methionine but not cysteine increased. Changes in methionine phloem loading triggered improvements in S uptake and assimilation and long-distance transport of the S compounds, S-methylmethionine and glutathione. In addition, nitrogen and carbon assimilation and source-to-sink allocation were upregulated, together resulting in increased plant biomass and seed yield. Further, methionine and amino acid delivery to individual seeds and uptake by the cotyledons improved, leading to increased accumulation of storage proteins by up to 23%, due to both higher levels of S-poor and, most importantly, S-rich proteins. Sulfate delivery to the embryo and S assimilation in the cotyledons were also upregulated, further contributing to the improved S-rich storage protein pools and seed quality. Overall, this work demonstrates that methionine transporter function in source and sink tissues presents a bottleneck in S allocation to seeds and that its targeted manipulation is essential for overcoming limitations in the accumulation of high-quality seed storage proteins.


Assuntos
Membrana Celular/metabolismo , Metionina/metabolismo , Floema/metabolismo , Pisum sativum/metabolismo , Folhas de Planta/metabolismo , Transporte Proteico/fisiologia , Sementes/metabolismo , Plantas Geneticamente Modificadas
4.
Plant J ; 101(1): 217-236, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520495

RESUMO

Seed development largely depends on the long-distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source-to-sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this 'Push-and-Pull' approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source-to-sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1-overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild-type plants. Together, the results demonstrate that the SUT1-overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Push-and-Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.


Assuntos
Floema/metabolismo , Sementes/metabolismo , Sacarose/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
5.
Plant J ; 103(1): 395-411, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32159895

RESUMO

In agricultural soils, amino acids can represent vital nitrogen (N) sources for crop growth and yield. However, the molecular mechanisms underlying amino acid uptake and allocation are poorly understood in crop plants. This study shows that rice (Oryza sativa L.) roots can acquire aspartate at soil concentration, and that japonica subspecies take up this acidic amino acid 1.5-fold more efficiently than indica subspecies. Genetic association analyses with 68 representative japonica or indica germplasms identified rice Lysine-Histidine-type Transporter 1 (OsLHT1) as a candidate gene associated with the aspartate uptake trait. When expressed in yeast, OsLHT1 supported cell growth on a broad spectrum of amino acids, and effectively transported aspartate, asparagine and glutamate. OsLHT1 is localized throughout the rice root, including root hairs, epidermis, cortex and stele, and to the leaf vasculature. Knockout of OsLHT1 in japonica resulted in reduced root uptake of amino acids. Furthermore, in 15 N-amino acid-fed mutants versus wild-type, a higher percentage of 15 N remained in roots instead of being allocated to the shoot. 15 N-ammonium uptake and subsequently the delivery of root-synthesized amino acids to Oslht1 shoots were also significantly decreased, which was accompanied by reduced shoot growth. These results together provide evidence that OsLHT1 functions in both root uptake and root to shoot allocation of a broad spectrum of amino acids in rice.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/fisiologia , Aminoácidos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Ácido Aspártico/metabolismo , Estudos de Associação Genética , Oryza/genética , Oryza/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Polimorfismo de Nucleotídeo Único/genética
6.
J Exp Bot ; 72(12): 4435-4456, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33829261

RESUMO

The effective use of available nitrogen (N) to improve crop grain yields provides an important strategy to reduce environmental N pollution and promote sustainable agriculture. However, little is known about the common genetic basis of N use efficiency (NUE) at varying N availability. Two wheat (Triticum aestivum L.) cultivars were grown in the field with high, moderate, and low N supply. Cultivar Zhoumai 27 outperformed Aikang 58 independent of the N supply and showed improved growth, canopy leaf area index, flag leaf surface area, grain number, and yield, and enhanced NUE due to both higher N uptake and utilization efficiency. Further, transcriptome and proteome analyses were performed using flag leaves that provide assimilates for grain growth. The results showed that many genes or proteins that are up- or down-regulated under all N regimes are associated with N and carbon metabolism and transport. This was reinforced by cultivar differences in photosynthesis, assimilate phloem transport, and grain protein/starch yield. Overall, our study establishes that improving NUE at both high and low N supply requires distinct adjustments in leaf metabolism and assimilate partitioning. Identified key genes/proteins may individually or concurrently regulate NUE and are promising targets for maximizing crop NUE irrespective of the N supply.


Assuntos
Nitrogênio , Triticum , Grão Comestível , Proteômica , Transcriptoma , Triticum/genética
7.
J Exp Bot ; 71(15): 4495-4511, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32188989

RESUMO

Nitrogen (N)-fixing soybean plants use the ureides allantoin and allantoic acid as major long-distance transport forms of N, but in non-fixing, non-nodulated plants amino acids mainly serve in source-to-sink N allocation. However, some ureides are still synthesized in roots of non-fixing soybean, and our study addresses the role of ureide transport processes in those plants. In previous work, legume ureide permeases (UPSs) were identified that are involved in cellular import of allantoin and allantoic acid. Here, UPS1 from common bean was expressed in the soybean phloem, which resulted in enhanced source-to-sink transport of ureides in the transgenic plants. This was accompanied by increased ureide synthesis and elevated allantoin and allantoic acid root-to-sink transport. Interestingly, amino acid assimilation, xylem transport, and phloem partitioning to sinks were also strongly up-regulated. In addition, photosynthesis and sucrose phloem transport were improved in the transgenic plants. These combined changes in source physiology and assimilate partitioning resulted in increased vegetative growth and improved seed numbers. Overall, the results support that ureide transport processes in non-fixing plants affect source N and carbon acquisition and assimilation as well as source-to-sink translocation of N and carbon assimilates with consequences for plant growth and seed development.


Assuntos
Fabaceae , Glycine max , Nitrogênio , Floema , Sementes , Glycine max/genética
8.
Plant Physiol ; 178(1): 174-188, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082496

RESUMO

The coordinated distribution of nitrogen to source leaves and sinks is essential for supporting leaf metabolism while also supplying sufficient nitrogen to seeds for development. This study aimed to understand how regulated amino acid allocation to leaves affects photosynthesis and overall plant nitrogen use efficiency in Arabidopsis (Arabidopsis thaliana) and how soil nitrogen availability influences these processes. Arabidopsis plants with a knockout of AAP2, encoding an amino acid permease involved in xylem-to-phloem transfer of root-derived amino acids, were grown in low-, moderate-, and high-nitrogen environments. We analyzed nitrogen allocation to shoot tissues, photosynthesis, and photosynthetic and plant nitrogen use efficiency in these knockout plants. Our results demonstrate that, independent of nitrogen conditions, aap2 plants allocate more nitrogen to leaves than wild-type plants. Increased leaf nitrogen supply positively affected chlorophyll and Rubisco levels, photosynthetic nitrogen use efficiency, and carbon assimilation and transport to sinks. The aap2 plants outperformed wild-type plants with respect to growth, seed yield and carbon storage pools, and nitrogen use efficiency in both high and deficient nitrogen environments. Overall, this study demonstrates that increasing nitrogen allocation to leaves represents an effective strategy for improving carbon fixation and photosynthetic nitrogen use efficiency. The results indicate that an optimized coordination of nitrogen and carbon partitioning processes is critical for high oilseed production in Arabidopsis, including in plants exposed to limiting nitrogen conditions.


Assuntos
Aminoácidos/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Clorofila/metabolismo , Mutagênese Insercional , Brotos de Planta/metabolismo , Feixe Vascular de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/metabolismo , Estresse Fisiológico
9.
New Phytol ; 217(1): 35-53, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29120059

RESUMO

Contents Summary 35 I. Introduction 35 II. Nitrogen acquisition and assimilation 36 III. Root-to-shoot transport of nitrogen 38 IV. Nitrogen storage pools in vegetative tissues 39 V. Nitrogen transport from source leaf to sink 40 VI. Nitrogen import into sinks 42 VII. Relationship between source and sink nitrogen transport processes and metabolism 43 VIII. Regulation of nitrogen transport 43 IX. Strategies for crop improvement 44 X. Conclusions 46 Acknowledgements 47 References 47 SUMMARY: Nitrogen is an essential nutrient for plant growth. World-wide, large quantities of nitrogenous fertilizer are applied to ensure maximum crop productivity. However, nitrogen fertilizer application is expensive and negatively affects the environment, and subsequently human health. A strategy to address this problem is the development of crops that are efficient in acquiring and using nitrogen and that can achieve high seed yields with reduced nitrogen input. This review integrates the current knowledge regarding inorganic and organic nitrogen management at the whole-plant level, spanning from nitrogen uptake to remobilization and utilization in source and sink organs. Plant partitioning and transient storage of inorganic and organic nitrogen forms are evaluated, as is how they affect nitrogen availability, metabolism and mobilization. Essential functions of nitrogen transporters in source and sink organs and their importance in regulating nitrogen movement in support of metabolism, and vegetative and reproductive growth are assessed. Finally, we discuss recent advances in plant engineering, demonstrating that nitrogen transporters are effective targets to improve crop productivity and nitrogen use efficiency. While inorganic and organic nitrogen transporters were examined separately in these studies, they provide valuable clues about how to successfully combine approaches for future crop engineering.


Assuntos
Produtos Agrícolas/metabolismo , Nitrogênio/metabolismo , Transporte Biológico , Produtos Agrícolas/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
10.
Plant Physiol ; 175(1): 235-247, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28733388

RESUMO

Improving the efficiency of nitrogen (N) uptake and utilization in plants could potentially increase crop yields while reducing N fertilization and, subsequently, environmental pollution. Within most plants, N is transported primarily as amino acids. In this study, pea (Pisum sativum) plants overexpressing AMINO ACID PERMEASE1 (AAP1) were used to determine if and how genetic manipulation of amino acid transport from source to sink affects plant N use efficiency. The modified plants were grown under low, moderate, or high N fertilization regimes. The results showed that, independent of the N nutrition, the engineered plants allocate more N via the vasculature to the shoot and seeds and produce more biomass and higher seed yields than wild-type plants. Dependent on the amount of N supplied, the AAP1-overexpressing plants displayed improved N uptake or utilization efficiency, or a combination of the two. They also showed significantly increased N use efficiency in N-deficient as well as in N-rich soils and, impressively, required half the amount of N to produce as many fruits and seeds as control plants. Together, these data support that engineering N allocation from source to sink presents an effective strategy to produce crop plants with improved productivity as well as N use efficiency in a range of N environments.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Biomassa , Nitrogênio/metabolismo , Pisum sativum/metabolismo , Sementes/crescimento & desenvolvimento , Fertilizantes , Pisum sativum/crescimento & desenvolvimento
11.
J Exp Bot ; 69(21): 5205-5219, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30113690

RESUMO

Legumes fix atmospheric nitrogen through a symbiotic relationship with bacteroids in root nodules. Following fixation in pea (Pisum sativum L.) nodules, nitrogen is reduced to amino acids that are exported via the nodule xylem to the shoot, and in the phloem to roots in support of growth. However, the mechanisms involved in amino acid movement towards the nodule vasculature, and their importance for nodule function and plant nutrition, were unknown. We found that in pea nodules the apoplasmic pathway is an essential route for amino acid partitioning from infected cells to the vascular bundles, and that amino acid permease PsAAP6 is a key player in nitrogen retrieval from the apoplasm into inner cortex cells for nodule export. Using an miRNA interference (miR) approach, it was demonstrated that PsAAP6 function in nodules, and probably in roots, and affects both shoot and root nitrogen supply, which were strongly decreased in PsAAP6-miR plants. Further, reduced transporter function resulted in increased nodule levels of ammonium, asparagine, and other amino acids. Surprisingly, nitrogen fixation and nodule metabolism were up-regulated in PsAAP6-miR plants, indicating that under shoot nitrogen deficiency, or when plant nitrogen demand is high, systemic signaling leads to an increase in nodule activity, independent of the nodule nitrogen status.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Fixação de Nitrogênio , Nitrogênio/metabolismo , Pisum sativum/fisiologia , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Perfilação da Expressão Gênica , Nutrientes/metabolismo , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/metabolismo
12.
Plant Physiol ; 171(1): 508-21, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27016446

RESUMO

Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Floema/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Nitrogênio/metabolismo , Floema/genética , Folhas de Planta/metabolismo , Sementes/metabolismo
13.
J Integr Plant Biol ; 59(6): 409-421, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28296149

RESUMO

Metabolite transport processes and primary metabolism are highly interconnected. This study examined the importance of source-to-sink nitrogen partitioning, and associated nitrogen metabolism for carbon capture, transport and usage. Specifically, Arabidopsis aap8 (AMINO ACID PERMEASE 8) mutant lines were analyzed to resolve the consequences of reduced amino acid phloem loading for source leaf carbon metabolism, sucrose phloem transport and sink development during vegetative and reproductive growth phase. Results showed that decreased amino acid transport had a negative effect on sink development of aap8 lines throughout the life cycle, leading to an overall decrease in plant biomass. During vegetative stage, photosynthesis and carbohydrate levels were decreased in aap8 leaves, while expression of carbon metabolism and transport genes, as well as sucrose phloem transport were not affected despite reduced sink strength. However, when aap8 plants transitioned to reproductive phase, carbon fixation and assimilation as well as sucrose partitioning to siliques were strongly decreased. Overall, this work demonstrates that phloem loading of nitrogen has varying implications for carbon fixation, assimilation and source-to-sink allocation depending on plant growth stage. It further suggests alterations in source-sink relationships, and regulation of carbon metabolism and transport by sink strength in a development-dependent manner.


Assuntos
Arabidopsis/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Floema/metabolismo , Desenvolvimento Vegetal , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Ciclo do Carbono
14.
Plant J ; 81(1): 134-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25353986

RESUMO

The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.


Assuntos
Aminoácidos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Transporte Biológico , Biomassa , Carbono/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Floema/genética , Floema/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
15.
J Exp Bot ; 65(7): 1865-78, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24489071

RESUMO

In most plant species, amino acids are the predominant chemical forms in which nitrogen is transported. However, in nodulated tropical or subtropical legumes, ureides are the main nitrogen transport compounds. This review describes the partitioning of amino acids and ureides within the plant, and follows their movement from the location of synthesis (source) to the sites of usage (sink). Xylem and phloem connect source and sink organs and serve as routes for long-distance transport of the organic nitrogen. Loading and unloading of these transport pathways might require movement of amino acids and ureides across cell membranes, a task that is mediated by membrane proteins (i.e. transporters) functioning as export or import systems. The current knowledge on amino acid and ureide transporters involved in long-distance transport of nitrogen is provided and their importance for source and sink physiology discussed. The review concludes by exploring possibilities for genetic manipulation of organic nitrogen transporter activities to confer increases in crop productivity.


Assuntos
Aminoácidos/metabolismo , Fabaceae/metabolismo , Nitrogênio/metabolismo , Ureia/análogos & derivados , Ureia/metabolismo , Transporte Biológico , Fabaceae/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Floema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/metabolismo
16.
J Exp Bot ; 65(18): 5193-204, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25005136

RESUMO

Plants acquire nitrogen in the form of amino acids from the soil, and transport proteins located in the plasma membrane of root cells are required for this process. It was found that the Arabidopsis lysine-histidine-like transporter LHT6 is expressed in root cells important for amino acid uptake, including the epidermis, root hairs, and cortex. Transport studies with lht6 mutants using high levels of amino acids demonstrated that LHT6 is in fact involved in amino acid uptake. To determine if LHT6 plays a role in nitrogen acquisition at soil amino acid concentrations, growth and uptake studies were performed with low levels of toxic amino acid analogues and radiolabelled amino acids, respectively. In addition, mutants of AAP1, another root amino acid transporter, and lht6/aap1 double mutants were examined. The results showed that LHT6 is involved in uptake of acidic amino acids, glutamine and alanine, and probably phenylalanine. LHT6 seems not to transport basic or other neutral amino acids, or, alternatively, other transporters might compensate for eliminated LHT6 function. Previous studies suggested that AAP1 only takes up amino acids at high concentrations; however, here it is demonstrated that the transporter functions in acquisition of glutamate and neutral amino acids when present at soil concentrations. When comparing the characterized root uptake systems, it appears that transporters both with overlapping substrate specificity and with preference for specific substrates are required to access the soil amino acid pool.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Modelos Biológicos , Raízes de Plantas/genética
17.
Plant J ; 72(3): 355-67, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22725647

RESUMO

Legumes can access atmospheric nitrogen through a symbiotic relationship with nitrogen-fixing bacteroids that reside in root nodules. In soybean, the products of fixation are the ureides allantoin and allantoic acid, which are also the dominant long-distance transport forms of nitrogen from nodules to the shoot. Movement of nitrogen assimilates out of the nodules occurs via the nodule vasculature; however, the molecular mechanisms for ureide export and the importance of nitrogen transport processes for nodule physiology have not been resolved. Here, we demonstrate the function of two soybean proteins - GmUPS1-1 (XP_003516366) and GmUPS1-2 (XP_003518768) - in allantoin and allantoic acid transport out of the nodule. Localization studies revealed the presence of both transporters in the plasma membrane, and expression in nodule cortex cells and vascular endodermis. Functional analysis in soybean showed that repression of GmUPS1-1 and GmUPS1-2 in nodules leads to an accumulation of ureides and decreased nitrogen partitioning to roots and shoot. It was further demonstrated that nodule development, nitrogen fixation and nodule metabolism were negatively affected in RNAi UPS1 plants. Together, we conclude that export of ureides from nodules is mediated by UPS1 proteins, and that activity of the transporters is not only essential for shoot nitrogen supply but also for nodule development and function.


Assuntos
Alantoína/metabolismo , Glycine max/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Ureia/análogos & derivados , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Fixação de Nitrogênio , Nitrogenase/metabolismo , Fenótipo , Proteínas de Plantas/genética , Nodulação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/citologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/fisiologia , Plantas Geneticamente Modificadas , Interferência de RNA , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/fisiologia , Glycine max/citologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Simbiose , Nicotiana/genética , Nicotiana/metabolismo , Ureia/metabolismo , Leveduras/genética , Leveduras/metabolismo
18.
Plant Cell ; 22(11): 3603-20, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21075769

RESUMO

Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield.


Assuntos
Aminoácidos/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Floema/metabolismo , Óleos de Plantas , Sementes , Xilema/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Carbono/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Nitrogênio/metabolismo , Cebolas/citologia , Cebolas/genética , Cebolas/metabolismo , Folhas de Planta/química , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/química , Sementes/metabolismo
19.
J Plant Physiol ; 269: 153613, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35033961

RESUMO

Legumes develop a symbiotic relationship with bacteria that are housed in root nodules and fix atmospheric di-nitrogen (N2) to ammonia. In soybean (Glycine max (L.) Merr.) nodules, the final products of nitrogen (N) fixation are amino acids, and the ureides allantoin and allantoic acid that also serve as the major long-distance N transport forms. Recently, we have shown that increased expression of UPS1 (ureide permease 1) in soybean nodules results in enhanced ureide export from nodules with positive effects on N fixation and seed yield. Here, we demonstrate that changes in the ureide transport processes trigger alterations in allantoin and allantoic acid pools and partitioning throughout the transgenic plants. They further result in adjustments in amino acid availability in, and translocation to, root and shoot sinks. In addition, leaf carbon (C) capture, assimilation and allocation to sinks are improved, accommodating the increased nodule function, and root and shoot growth. Overall, we demonstrate that enhanced ureide partitioning in nodulated soybean leads to a complex rebalancing of N and C acquisition, metabolism, and transport processes with positive consequences for above- and below-ground vegetative biomass, and whole-plant N and C gains.


Assuntos
Alantoína/metabolismo , Glycine max/metabolismo , Nodulação , Ureia/análogos & derivados , Transporte Biológico , Nitrogênio/química , Nitrogênio/metabolismo , Fixação de Nitrogênio , Glycine max/microbiologia , Ureia/metabolismo
20.
Plant Physiol ; 154(4): 1886-96, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20923886

RESUMO

Seeds of grain legumes are important energy and food sources for humans and animals. However, the yield and quality of legume seeds are limited by the amount of sulfur (S) partitioned to the seeds. The amino acid S-methylmethionine (SMM), a methionine derivative, has been proposed to be an important long-distance transport form of reduced S, and we analyzed whether SMM phloem loading and source-sink translocation are important for the metabolism and growth of pea (Pisum sativum) plants. Transgenic plants were produced in which the expression of a yeast SMM transporter, S-Methylmethionine Permease1 (MMP1, YLL061W), was targeted to the phloem and seeds. Phloem exudate analysis showed that concentrations of SMM are elevated in MMP1 plants, suggesting increased phloem loading. Furthermore, expression studies of genes involved in S transport and metabolism in source organs, as well as xylem sap analyses, support that S uptake and assimilation are positively affected in MMP1 roots. Concomitantly, nitrogen (N) assimilation in root and leaf and xylem amino acid profiles were changed, resulting in increased phloem loading of amino acids. When investigating the effects of increased S and N phloem transport on seed metabolism, we found that protein levels were improved in MMP1 seeds. In addition, changes in SMM phloem loading affected plant growth and seed number, leading to an overall increase in seed S, N, and protein content in MMP1 plants. Together, these results suggest that phloem loading and source-sink partitioning of SMM are important for plant S and N metabolism and transport as well as seed set.


Assuntos
Nitrogênio/metabolismo , Floema/metabolismo , Pisum sativum/metabolismo , Sementes/crescimento & desenvolvimento , Enxofre/metabolismo , Vitamina U/metabolismo , Pisum sativum/embriologia , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA