Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small Methods ; : e2400857, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970553

RESUMO

Protein-based hydrogels have great potential to be used as bioinks for biofabrication-driven tissue regeneration strategies due to their innate bioactivity. Nevertheless, their use as bioinks in conventional 3D bioprinting is impaired due to their intrinsic low viscosity. Using embedding bioprinting, a liquid bioink is printed within a support that physically holds the patterned filament. Inspired by the recognized microencapsulation technique complex coacervation, crystal self-healing embedding bioprinting (CLADDING) is introduced based on a highly transparent crystal supporting bath. The suitability of distinct classes of gelatins is evaluated (i.e., molecular weight distribution, isoelectric point, and ionic content), as well as the formation of gelatin-gum arabic microparticles as a function of pH, temperature, solvent, and mass ratios. Characterizing and controlling this parametric window resulted in high yields of support bath with ideal self-healing properties for interaction with protein-based bioinks. This support bath achieved transparency, which boosted light permeation within the bath. Bioprinted constructs fully composed of platelet lysates encapsulating a co-culture of human mesenchymal stromal cells and endothelial cells are obtained, demonstrating a high-dense cellular network with excellent cell viability and stability over a month. CLADDING broadens the spectrum of photocrosslinkable materials with extremely low viscosity that can now be bioprinted with sensitive cells without any additional support.

2.
Front Bioeng Biotechnol ; 9: 647031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791288

RESUMO

The stromal microenvironment of breast tumors, namely the vasculature, has a key role in tumor development and metastatic spread. Tumor angiogenesis is a coordinated process, requiring the cooperation of cancer cells, stromal cells, such as fibroblasts and endothelial cells, secreted factors and the extracellular matrix (ECM). In vitro models capable of capturing such complex environment are still scarce, but are pivotal to improve success rates in drug development and screening. To address this challenge, we developed a hybrid alginate-based 3D system, combining hydrogel-embedded mammary epithelial cells (parenchymal compartment) with a porous scaffold co-seeded with fibroblasts and endothelial cells (vascularized stromal compartment). For the stromal compartment, we used porous alginate scaffolds produced by freeze-drying with particle leaching, a simple, low-cost and non-toxic approach that provided storable ready-to-use scaffolds fitting the wells of standard 96-well plates. Co-seeded endothelial cells and fibroblasts were able to adhere to the surface, spread and organize into tubular-like structures. For the parenchymal compartment, a designed alginate gel precursor solution load with mammary epithelial cells was added to the pores of pre-vascularized scaffolds, forming a hydrogel in situ by ionic crosslinking. The 3D hybrid system supports epithelial morphogenesis in organoids/tumoroids and endothelial tubulogenesis, allowing heterotypic cell-cell and cell-ECM interactions, while presenting excellent experimental tractability for whole-mount confocal microscopy, histology and mild cell recovery for down-stream analysis. It thus provides a unique 3D in vitro platform to dissect epithelial-stromal interactions and tumor angiogenesis, which may assist in the development of selective and more effective anticancer therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA