Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 6, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166563

RESUMO

BACKGROUND: Microsporidia are a large taxon of intracellular pathogens characterized by extraordinarily streamlined genomes with unusually high sequence divergence and many species-specific adaptations. These unique factors pose challenges for traditional genome annotation methods based on sequence similarity. As a result, many of the microsporidian genomes sequenced to date contain numerous genes of unknown function. Recent innovations in rapid and accurate structure prediction and comparison, together with the growing amount of data in structural databases, provide new opportunities to assist in the functional annotation of newly sequenced genomes. RESULTS: In this study, we established a workflow that combines sequence and structure-based functional gene annotation approaches employing a ChimeraX plugin named ANNOTEX (Annotation Extension for ChimeraX), allowing for visual inspection and manual curation. We employed this workflow on a high-quality telomere-to-telomere sequenced tetraploid genome of Vairimorpha necatrix. First, the 3080 predicted protein-coding DNA sequences, of which 89% were confirmed with RNA sequencing data, were used as input. Next, ColabFold was used to create protein structure predictions, followed by a Foldseek search for structural matching to the PDB and AlphaFold databases. The subsequent manual curation, using sequence and structure-based hits, increased the accuracy and quality of the functional genome annotation compared to results using only traditional annotation tools. Our workflow resulted in a comprehensive description of the V. necatrix genome, along with a structural summary of the most prevalent protein groups, such as the ricin B lectin family. In addition, and to test our tool, we identified the functions of several previously uncharacterized Encephalitozoon cuniculi genes. CONCLUSION: We provide a new functional annotation tool for divergent organisms and employ it on a newly sequenced, high-quality microsporidian genome to shed light on this uncharacterized intracellular pathogen of Lepidoptera. The addition of a structure-based annotation approach can serve as a valuable template for studying other microsporidian or similarly divergent species.


Assuntos
Genoma , Genômica , Anotação de Sequência Molecular
2.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37479678

RESUMO

The Y chromosome is theorized to facilitate evolution of sexual dimorphism by accumulating sexually antagonistic loci, but empirical support is scarce. Due to the lack of recombination, Y chromosomes are prone to degenerative processes, which poses a constraint on their adaptive potential. Yet, in the seed beetle, Callosobruchus maculatus segregating Y linked variation affects male body size and thereby sexual size dimorphism (SSD). Here, we assemble C. maculatus sex chromosome sequences and identify molecular differences associated with Y-linked SSD variation. The assembled Y chromosome is largely euchromatic and contains over 400 genes, many of which are ampliconic with a mixed autosomal and X chromosome ancestry. Functional annotation suggests that the Y chromosome plays important roles in males beyond primary reproductive functions. Crucially, we find that, besides an autosomal copy of the gene target of rapamycin (TOR), males carry an additional TOR copy on the Y chromosome. TOR is a conserved regulator of growth across taxa, and our results suggest that a Y-linked TOR provides a male specific opportunity to alter body size. A comparison of Y haplotypes associated with male size difference uncovers a copy number variation for TOR, where the haplotype associated with decreased male size, and thereby increased sexual dimorphism, has two additional TOR copies. This suggests that sexual conflict over growth has been mitigated by autosome to Y translocation of TOR followed by gene duplications. Our results reveal that despite of suppressed recombination, the Y chromosome can harbor adaptive potential as a male-limited supergene.


Assuntos
Besouros , Variações do Número de Cópias de DNA , Masculino , Animais , Besouros/genética , Caracteres Sexuais , Cromossomo Y , Sementes
3.
Nucleic Acids Res ; 45(5): 2629-2643, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28100699

RESUMO

Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Malassezia/genética , Anotação de Sequência Molecular/métodos , Proteogenômica/métodos , Genes Fúngicos , Genoma Mitocondrial , Peptídeos/genética , Domínios Proteicos , Análise de Sequência de RNA
4.
PLoS Genet ; 11(12): e1005747, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26714275

RESUMO

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2's repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sítios de Ligação , Mutação , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
Plant Cell ; 26(5): 1981-1991, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24838976

RESUMO

CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) functions as an E3 ubiquitin ligase in both plants and animals. In dark-grown Arabidopsis thaliana seedlings, COP1 targets photomorphogenesis-promoting factors for degradation to repress photomorphogenesis. Little is known, however, about how COP1 itself is regulated. Here, we identify COP1 SUPPRESSOR1 (CSU1), a RING-finger E3 ubiquitin ligase, as a regulator of COP1. Genetic evidence demonstrates that csu1 mutations suppress cop1-6 phenotypes completely in the dark. Furthermore, CSU1 colocalizes with COP1 in nuclear speckles and negatively regulates COP1 protein accumulation in darkness. CSU1 can ubiquitinate COP1 in vitro and is essential for COP1 ubiquitination in vivo. Therefore, we conclude that CSU1 plays a major role in maintaining COP1 homeostasis by targeting COP1 for ubiquitination and degradation in dark-grown seedlings.

6.
Environ Microbiol ; 17(2): 496-513, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25142400

RESUMO

Xeromyces bisporus can grow on sugary substrates down to 0.61, an extremely low water activity. Its genome size is approximately 22 Mb. Gene clusters encoding for secondary metabolites were conspicuously absent; secondary metabolites were not detected experimentally. Thus, in its 'dry' but nutrient-rich environment, X. bisporus appears to have relinquished abilities for combative interactions. Elements to sense/signal osmotic stress, e.g. HogA pathway, were present in X. bisporus. However, transcriptomes at optimal (∼ 0.89) versus low aw (0.68) revealed differential expression of only a few stress-related genes; among these, certain (not all) steps for glycerol synthesis were upregulated. Xeromyces bisporus increased glycerol production during hypo- and hyper-osmotic stress, and much of its wet weight comprised water and rinsable solutes; leaked solutes may form a protective slime. Xeromyces bisporus and other food-borne moulds increased membrane fatty acid saturation as water activity decreased. Such modifications did not appear to be transcriptionally regulated in X. bisporus; however, genes modulating sterols, phospholipids and the cell wall were differentially expressed. Xeromyces bisporus was previously proposed to be a 'chaophile', preferring solutes that disorder biomolecular structures. Both X. bisporus and the closely related xerophile, Xerochrysium xerophilum, with low membrane unsaturation indices, could represent a phylogenetic cluster of 'chaophiles'.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Glicerol/metabolismo , Adaptação Fisiológica/genética , Ascomicetos/isolamento & purificação , Perfilação da Expressão Gênica , Genoma Fúngico/genética , Família Multigênica , Pressão Osmótica , Filogenia , Água
7.
Appl Environ Microbiol ; 81(17): 5784-93, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092449

RESUMO

Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23.


Assuntos
Proteínas de Bactérias/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Polissacarídeos Bacterianos/deficiência , Infecções por Rotavirus/microbiologia , Rotavirus/fisiologia , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Feminino , Humanos , Fragmentos de Imunoglobulinas/genética , Lacticaseibacillus rhamnosus/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Probióticos/administração & dosagem , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia
8.
J Clin Microbiol ; 52(8): 3118-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24871217

RESUMO

The dog-associated Staphylococcus pseudintermedius is a rare pathogen in humans. Here we describe a cluster of infections caused by the methicillin-resistant S. pseudintermedius clone ST71-J-t02-II-III. It involved four elderly patients at a tertiary hospital. Three patients had wound infections, and the strain had a tendency to cause bullous skin lesions.


Assuntos
Infecção Hospitalar/epidemiologia , Resistência a Meticilina , Infecções Estafilocócicas/epidemiologia , Staphylococcus/isolamento & purificação , Centros de Atenção Terciária , Idoso , Idoso de 80 Anos ou mais , Animais , Análise por Conglomerados , Infecção Hospitalar/microbiologia , Infecção Hospitalar/patologia , Cães , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem Molecular , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus/efeitos dos fármacos
9.
Plant J ; 70(2): 279-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22211401

RESUMO

The photosynthetic apparatus is composed of proteins encoded by genes from both the nuclear and the chloroplastic genomes. The activities of the nuclear and chloroplast genomes must therefore be closely coordinated through intracellular signalling. The plastids produce multiple retrograde signals at different times of their development, and in response to changes in the environment. These signals regulate the expression of nuclear-encoded photosynthesis genes to match the current status of the plastids. Using forward genetics we identified PLASTID REDOX INSENSITIVE 2 (PRIN2), a chloroplast component involved in redox-mediated retrograde signalling. The allelic mutants prin2-1 and prin2-2 demonstrated a misregulation of photosynthesis-associated nuclear gene expression in response to excess light, and an inhibition of photosynthetic electron transport. As a consequence of the misregulation of LHCB1.1 and LHCB2.4, the prin2 mutants displayed a high irradiance-sensitive phenotype with significant photoinactivation of photosystem II, indicated by a reduced variable to maximal fluorescence ratio (F(v) /F(m) ). PRIN2 is localized to the nucleoids, and plastid transcriptome analyses demonstrated that PRIN2 is required for full expression of genes transcribed by the plastid-encoded RNA polymerase (PEP). Similarly to the prin2 mutants, the ys1 mutant with impaired PEP activity also demonstrated a misregulation of LHCB1.1 and LHCB2.4 expression in response to excess light, suggesting a direct role for PEP activity in redox-mediated retrograde signalling. Taken together, our results indicate that PRIN2 is part of the PEP machinery, and that the PEP complex responds to photosynthetic electron transport and generates a retrograde signal, enabling the plant to synchronize the expression of photosynthetic genes from both the nuclear and plastidic genomes.


Assuntos
Proteínas de Arabidopsis/genética , Núcleo Celular/genética , RNA Polimerases Dirigidas por DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Luz , Mutação , Transdução de Sinais/efeitos da radiação , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Oxirredução/efeitos da radiação , Plastídeos/genética , Plastídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Tetrapirróis/metabolismo
10.
BMC Genomics ; 14: 165, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23496902

RESUMO

BACKGROUND: Chromosomal rearrangements in the form of deletions, insertions, inversions and translocations are frequently observed in breast cancer genomes, and a subset of these rearrangements may play a crucial role in tumorigenesis. To identify novel somatic chromosomal rearrangements, we determined the genome structures of 15 hormone-receptor negative breast tumors by long-insert mate pair massively parallel sequencing. RESULTS: We identified and validated 40 somatic structural alterations, including the recurring fusion between genes DDX10 and SKA3 and translocations involving the EPHA5 gene. Other rearrangements were found to affect genes in pathways involved in epigenetic regulation, mitosis and signal transduction, underscoring their potential role in breast tumorigenesis. RNA interference-mediated suppression of five candidate genes (DDX10, SKA3, EPHA5, CLTC and TNIK) led to inhibition of breast cancer cell growth. Moreover, downregulation of DDX10 in breast cancer cells lead to an increased frequency of apoptotic nuclear morphology. CONCLUSIONS: Using whole genome mate pair sequencing and RNA interference assays, we have discovered a number of novel gene rearrangements in breast cancer genomes and identified DDX10, SKA3, EPHA5, CLTC and TNIK as potential cancer genes with impact on the growth and proliferation of breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Rearranjo Gênico , Análise de Sequência de DNA , Mama/citologia , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Genes Neoplásicos/genética , Genômica , Humanos , Células MCF-7 , Reação em Cadeia da Polimerase , Interferência de RNA , Receptores de Esteroides
11.
Front Genet ; 14: 1244493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829276

RESUMO

Background: Xenacoelomorpha is a marine clade of microscopic worms that is an important model system for understanding the evolution of key bilaterian novelties, such as the excretory system. Nevertheless, Xenacoelomorpha genomics has been restricted to a few species that either can be cultured in the lab or are centimetres long. Thus far, no genomes are available for Nemertodermatida, one of the group's main clades and whose origin has been dated more than 400 million years ago. Methods: DNA was extracted from a single specimen and sequenced with HiFi following the PacBio Ultra-Low DNA Input protocol. After genome assembly, decontamination, and annotation, the genome quality was benchmarked using two acoel genomes and one Illumina genome as reference. The gene content of three cnidarians, three acoelomorphs, four deuterostomes, and eight protostomes was clustered in orthogroups to make inferences of gene content evolution. Finally, we focused on the genes related to the ultrafiltration excretory system to compare patterns of presence/absence and gene architecture among these clades. Results: We present the first nemertodermatid genome sequenced from a single specimen of Nemertoderma westbladi. Although genome contiguity remains challenging (N50: 60 kb), it is very complete (BUSCO: 80.2%, Metazoa; 88.6%, Eukaryota) and the quality of the annotation allows fine-detail analyses of genome evolution. Acoelomorph genomes seem to be relatively conserved in terms of the percentage of repeats, number of genes, number of exons per gene and intron size. In addition, a high fraction of genes present in both protostomes and deuterostomes are absent in Acoelomorpha. Interestingly, we show that all genes related to the excretory system are present in Xenacoelomorpha except Osr, a key element in the development of these organs and whose acquisition seems to be interconnected with the origin of the specialised excretory system. Conclusion: Overall, these analyses highlight the potential of the Ultra-Low Input DNA protocol and HiFi to generate high-quality genomes from single animals, even for relatively large genomes, making it a feasible option for sequencing challenging taxa, which will be an exciting resource for comparative genomics analyses.

12.
Nat Commun ; 14(1): 5164, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620373

RESUMO

Long-read sequencing has dramatically increased our understanding of human genome variation. Here, we demonstrate that long-read technology can give new insights into the genomic architecture of individual cells. Clonally expanded CD8+ T-cells from a human donor were subjected to droplet-based multiple displacement amplification (dMDA) to generate long molecules with reduced bias. PacBio sequencing generated up to 40% genome coverage per single-cell, enabling detection of single nucleotide variants (SNVs), structural variants (SVs), and tandem repeats, also in regions inaccessible by short reads. 28 somatic SNVs were detected, including one case of mitochondrial heteroplasmy. 5473 high-confidence SVs/cell were discovered, a sixteen-fold increase compared to Illumina-based results from clonally related cells. Single-cell de novo assembly generated a genome size of up to 598 Mb and 1762 (12.8%) complete gene models. In summary, our work shows the promise of long-read sequencing toward characterization of the full spectrum of genetic variation in single cells.


Assuntos
Genoma Humano , Genômica , Humanos , Tamanho do Genoma , Genoma Humano/genética , Linfócitos T CD8-Positivos , Ciclo Celular
13.
BMC Med Genet ; 13: 123, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23253088

RESUMO

BACKGROUND: Tourette Syndrome (TS) is a neuropsychiatric disorder in children characterized by motor and verbal tics. Although several genes have been suggested in the etiology of TS, the genetic mechanisms remain poorly understood. METHODS: Using cytogenetics and FISH analysis, we identified an apparently balanced t(6,22)(q16.2;p13) in a male patient with TS and obsessive-compulsive disorder (OCD). In order to map the breakpoints and to identify additional submicroscopic rearrangements, we performed whole genome mate-pair sequencing and CGH-array analysis on DNA from the proband. RESULTS: Sequence and CGH array analysis revealed a 400 kb deletion located 1.3 Mb telomeric of the chromosome 6q breakpoint, which has not been reported in controls. The deletion affects three genes (GPR63, NDUFA4 and KLHL32) and overlaps a region previously found deleted in a girl with autistic features and speech delay. The proband's mother, also a carrier of the translocation, was diagnosed with OCD and shares the deletion. We also describe a further potentially related rearrangement which, while unmapped in Homo sapiens, was consistent with the chimpanzee genome. CONCLUSIONS: We conclude that genome-wide sequencing at relatively low resolution can be used for the identification of submicroscopic rearrangements. We also show that large rearrangements may escape detection using standard analysis of whole genome sequencing data. Our findings further provide a candidate region for TS and OCD on chromosome 6q16.


Assuntos
Rearranjo Gênico , Genoma Humano , Transtorno Obsessivo-Compulsivo/genética , Síndrome de Tourette/genética , Cromossomos Humanos Par 6 , Variações do Número de Cópias de DNA , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Deleção de Genes , Humanos , Masculino , Transtorno Obsessivo-Compulsivo/diagnóstico , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Acoplados a Proteínas G/genética , Análise de Sequência de DNA , Translocação Genética
14.
Methods Mol Biol ; 2516: 39-50, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35922620

RESUMO

DNA methylations are one of the most well-known epigenetic modifications along with histone modifications and noncoding RNAs. They are found at specific sites along the DNA in all domains of life, with 5-mC and 6-mA/4-mC being well-characterized in eukaryotes and bacteria respectively, and they have not only been described as contributing to the structure of the double helix itself but also as regulators of DNA-based processes such as replication, transcription, and recombination. Different methods have been developed to accurately identify and/or map methylated motifs to decipher the involvement of DNA methylations in regulatory networks that affect the cellular state.Although DNA methylations have been detected along archaeal genomes, their involvement as regulators of DNA-based processes remains the least known. To highlight the importance of DNA methylations in the control of key cellular mechanisms and their dynamics in archaea cells, we have used single-molecule real-time (SMRT) sequencing. This sequencing technology allows the identification and direct mapping of the methylated motifs along the genome of an organism. In this chapter, we present a step-by-step protocol for detecting DNA methylations in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius using SMRT sequencing. This protocol can easily be adapted to other prokaryotes.


Assuntos
Sulfolobus acidocaldarius , DNA/metabolismo , Metilação de DNA , Genoma Arqueal , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo
15.
mSystems ; 7(2): e0151821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35311563

RESUMO

Shewanella spp. play important ecological and biogeochemical roles, due in part to their versatile metabolism and swift integration of stimuli. While Shewanella spp. are primarily considered environmental microbes, Shewanella algae is increasingly recognized as an occasional human pathogen. S. algae shares the broad metabolic and respiratory repertoire of Shewanella spp. and thrives in similar ecological niches. In S. algae, nitrate and dimethyl sulfoxide (DMSO) respiration promote biofilm formation strain specifically, with potential implication of taxis and cyclic diguanosine monophosphate (c-di-GMP) signaling. Signal transduction systems in S. algae have not been investigated. To fill these knowledge gaps, we provide here an inventory of the c-di-GMP turnover proteome and chemosensory networks of the type strain S. algae CECT 5071 and compare them with those of 41 whole-genome-sequenced clinical and environmental S. algae isolates. Besides comparative analysis of genetic content and identification of laterally transferred genes, the occurrence and topology of c-di-GMP turnover proteins and chemoreceptors were analyzed. We found S. algae strains to encode 61 to 67 c-di-GMP turnover proteins and 28 to 31 chemoreceptors, placing S. algae near the top in terms of these signaling capacities per Mbp of genome. Most c-di-GMP turnover proteins were predicted to be catalytically active; we describe in them six novel N-terminal sensory domains that appear to control their catalytic activity. Overall, our work defines the c-di-GMP and chemosensory signal transduction pathways in S. algae, contributing to a better understanding of its ecophysiology and establishing S. algae as an auspicious model for the analysis of metabolic and signaling pathways within the genus Shewanella. IMPORTANCE Shewanella spp. are widespread aquatic bacteria that include the well-studied freshwater model strain Shewanella oneidensis MR-1. In contrast, the physiology of the marine and occasionally pathogenic species Shewanella algae is poorly understood. Chemosensory and c-di-GMP signal transduction systems integrate environmental stimuli to modulate gene expression, including the switch from a planktonic to sessile lifestyle and pathogenicity. Here, we systematically dissect the c-di-GMP proteome and chemosensory pathways of the type strain S. algae CECT 5071 and 41 additional S. algae isolates. We provide insights into the activity and function of these proteins, including a description of six novel sensory domains. Our work will enable future analyses of the complex, intertwined c-di-GMP metabolism and chemotaxis networks of S. algae and their ecophysiological role.


Assuntos
Proteínas de Bactérias , Shewanella , Humanos , Proteínas de Bactérias/genética , Proteoma , Biofilmes , Shewanella/genética , Genômica
16.
Arch Virol ; 156(10): 1835-40, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21630099

RESUMO

A new gammaherpesvirus, tentatively named cynomys herpesvirus 1 (CynGHV-1), was isolated from a black-tailed prairie dog (Cynomys ludovicianus). CynGHV-1 replicated cytopathogenically to moderate titers in various cell lines. Ten kb of the CynGHV-1 genome was sequenced using degenerate PCR and genomic cloning. Sequence similarities were found to different genes from known gammaherpesviruses. Phylogenetic analysis suggested that CynGHV-1 was in fact a novel virus closely related to representatives of different genera and unclassified members of the subfamily Gammaherpesvirinae. However, CynGHV-1 could not be assigned to any particular genus and therefore remains unclassified.


Assuntos
Herpesviridae/isolamento & purificação , Sciuridae/virologia , Animais , Linhagem Celular , Cricetinae , Herpesviridae/classificação , Herpesviridae/genética , Herpesviridae/fisiologia , Dados de Sequência Molecular , Filogenia , Replicação Viral
17.
Sci Rep ; 11(1): 23214, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853367

RESUMO

There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.


Assuntos
Abelhas/genética , Abelhas/parasitologia , Metagenoma , Varroidae/fisiologia , Animais , Abelhas/microbiologia , Abelhas/virologia , Genoma Bacteriano , Genoma de Inseto , Genoma Viral , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Suécia
18.
Microbiol Resour Announc ; 10(31): e0055921, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351223

RESUMO

We report the complete genome sequence and base modification analysis of the Shewanella algae type strain CECT 5071 (= OK-1 = ATCC 51192 = DSM 9167 = IAM 14159). The genome is composed of a single chromosome of 4,924,764 bp, with a GC content of 53.10%.

19.
Sci Rep ; 10(1): 5956, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249797

RESUMO

The main biological threat to the western honeybee (Apis mellifera) is the parasitic mite Varroa destructor, largely because it vectors lethal epidemics of honeybee viruses that, in the absence of this mite, are relatively innocuous. The severe pathology is a direct consequence of excessive virus titres caused by this novel transmission route. However, little is known about how the virus adapts genetically during transmission and whether this influences the pathology. Here, we show that upon injection into honeybee pupae, the deformed wing virus type-A (DWV-A) quasispecies undergoes a rapid, extensive expansion of its sequence space, followed by strong negative selection towards a uniform, common shape by the time the pupae have completed their development, with no difference between symptomatic and asymptomatic adults in either DWV titre or genetic composition. This suggests that the physiological and molecular environment during pupal development has a strong, conservative influence on shaping the DWV-A quasispecies in emerging adults. There was furthermore no evidence of any progressive adaptation of the DWV-A quasispecies to serial intra-abdominal injection, simulating mite transmission, despite the generation of ample variation immediately following each transmission, suggesting that the virus either had already adapted to transmission by injection, or was unaffected by it.


Assuntos
Vetores Aracnídeos/virologia , Abelhas/parasitologia , Pupa/parasitologia , Quase-Espécies/genética , Vírus de RNA/genética , Varroidae/virologia , Animais
20.
Elife ; 92020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958060

RESUMO

Genomic rearrangements associated with speciation often result in variation in chromosome number among closely related species. Malassezia species show variable karyotypes ranging between six and nine chromosomes. Here, we experimentally identified all eight centromeres in M. sympodialis as 3-5-kb long kinetochore-bound regions that span an AT-rich core and are depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur, which has seven chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with nine chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome-chromosome fusion. We propose that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.


Millions of yeast, bacteria and other microbes live in or on the human body. A type of yeast known as Malassezia is one of the most abundantmicrobes living on our skin. Generally, Malassezia do not cause symptoms in humans but are associated with dandruff, dermatitis and other skin conditions in susceptible individuals. They have also been found in the human gut, where they exacerbate Crohn's disease and pancreatic cancer. There are 18 closely related species of Malassezia and all have an unusually small amount of genetic material compared with other types of yeast. In yeast, like in humans, the genetic material is divided among several chromosomes. The number of chromosomes in different Malassezia species varies between six and nine. A region of each chromosome known as the centromere is responsible for ensuring that the equal numbers of chromosomes are passed on to their offspring. This means that any defects in centromeres can lead to the daughter yeast cells inheriting unequal numbers of chromosomes. Changes in chromosome number can drive the evolution of new species, but it remains unclear if and how centromere loss may have contributed to the evolution of Malassezia species. Sankaranarayanan et al. have now used biochemical, molecular genetic, and comparative genomic approaches to study the chromosomes of Malassezia species. The experiments revealed that nine Malassezia species had centromeres that shared common features such as being rich in adenine and thymine nucleotides, two of the building blocks of DNA. Sankaranarayanan et al. propose that these adenines and thymines make the centromeres more fragile leading to occasional breaks. This may have contributed to the loss of centromeres in some Malassezia cells and helped new species to evolve with fewer chromosomes. A better understanding of how Malassezia organize their genetic material should enable in-depth studies of how these yeasts interact with their human hosts and how they contribute to skin disease, cancer, Crohn's disease and other health conditions. More broadly, these findings may help scientists to better understand how changes in chromosomes cause new species to evolve.


Assuntos
Centrômero , Evolução Molecular , Cariotipagem , Malassezia/fisiologia , Cromossomos Fúngicos , Malassezia/classificação , Malassezia/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA