RESUMO
New [1,2]dithiolo[3,4-b]pyridine-5-carboxamides were synthesized through the reaction of dithiomalondianilide (N,N'-diphenyldithiomalondiamide) with 3-aryl-2-cyanoacrylamides or via a three-component reaction involving aromatic aldehydes, cyanoacetamide and dithiomalondianilide in the presence of morpholine. The structure of 6-amino-4-(2,4-dichloro- phenyl)-7-phenyl-3-(phenylimino)-4,7-dihydro-3H-[1,2]dithiolo[3,4-b]pyridine-5-carboxamide was confirmed using X-ray crystallography. To understand the reaction mechanism in detail, density functional theory (DFT) calculations were performed with a Grimme B97-3c composite computational scheme. The results revealed that the rate-limiting step is a cyclization process leading to the closure of the 1,4-dihydropyridine ring, with an activation barrier of 28.8 kcal/mol. Some of the dithiolo[3,4-b]pyridines exhibited moderate herbicide safening effects against 2,4-D. Additionally, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) parameters were calculated and molecular docking studies were performed to identify potential protein targets.
Assuntos
Aldeídos , Piridinas , Simulação de Acoplamento Molecular , CiclizaçãoRESUMO
Lung cancer is a leading cause of death worldwide, mostly due to diagnostics in the advanced stage. Therefore, the development of a quick, simple, and non-invasive diagnostic tool to identify cancer is essential. However, the creation of a reliable diagnostic tool is possible only in case of selectivity to other diseases, particularly, cancer of other localizations. This paper is devoted to the study of the variability of exhaled breath samples among patients with lung cancer and cancer of other localizations, such as esophageal, breast, colorectal, kidney, stomach, prostate, cervix, and skin. For this, gas chromatography-mass spectrometry (GC-MS) was used. Two classification models were built. The first model separated patients with lung cancer and cancer of other localizations. The second model classified patients with lung, esophageal, breast, colorectal, and kidney cancer. Mann-Whitney U tests and Kruskal-Wallis H tests were applied to identify differences in investigated groups. Discriminant analysis (DA), gradient-boosted decision trees (GBDT), and artificial neural networks (ANN) were applied to create the models. In the case of classifying lung cancer and cancer of other localizations, average sensitivity and specificity were 68% and 69%, respectively. However, the accuracy of classifying groups of patients with lung, esophageal, breast, colorectal, and kidney cancer was poor.
Assuntos
Carcinoma de Células Renais , Neoplasias Colorretais , Neoplasias Renais , Neoplasias Pulmonares , Feminino , Masculino , Humanos , Neoplasias Pulmonares/diagnóstico , BiomarcadoresRESUMO
The purpose of this work was to prepare new isatin- and monothiomalondiamide-based indole derivatives, as well as to study the properties of the new compounds. The four-component reaction of 5-R-isatins (R = H, CH3), malononitrile, monothiomalonamide (3-amino-3-thioxo- propanamide) and triethylamine in hot EtOH yields a mixture of isomeric triethylammonium 6'-amino-3'-(aminocarbonyl)-5'-cyano-2-oxo-1,2-dihydro-1'H- and 6'-amino-3'-(aminocarbonyl)- 5'-cyano-2-oxo-1,2-dihydro-3'H-spiro[indole-3,4'-pyridine]-2'-thiolates. The reactivity and structure of the products was studied. We found that oxidation of spiro[indole-3,4'-pyridine]-2'-thiolates with DMSO-HCl system produced only acidification products, diastereomeric 6'-amino-5'-cyano-5-methyl-2-oxo-2'-thioxo-1,2,2',3'-tetrahydro-1'H-spiro-[indole-3,4'-pyridine]- 3'-carboxamides, instead of the expected isothiazolopyridines. The alkylation of the prepared spiro[indole-3,4'-pyridine]-2'-thiolates upon treatment with N-aryl α-chloroacetamides and α-bromoacetophenones proceeds in a regioselective way at the sulfur atom. In the case of α-bromoacetophenones, ring-chain tautomerism was observed for the S-alkylation products. According to NMR data, the compounds consist of a mixture of stereoisomers of 2'-amino-6'-[(2-aryl-2-oxoethyl)thio]-3'-cyano-2-oxo-1'H-spiro[indoline-3,4'-pyridine]-5'-carboxamides and 5'-amino-3'-aryl-6'-cyano-3'-hydroxy-2-oxo-2',3'-dihydrospiro[indoline-3,7'-thiazolo[3,2-a]pyridine]-8'-carboxamides in various ratios. The structure of the synthesized compounds was confirmed by IR spectroscopy, HRMS, 1H and 13C DEPTQ NMR studies and the results of 2D NMR experiments (1H-13C HSQC, 1H-13C HMBC). Molecular docking studies were performed to investigate suitable binding modes of some new compounds with respect to the transcriptional regulator protein PqsR of Pseudomonas aeruginosa. The docking studies revealed that the compounds have affinity for the bacterial regulator protein PqsR of Pseudomonas aeruginosa with a binding energy in the range of -5.8 to -8.2 kcal/mol. In addition, one of the new compounds, 2'-amino-3'-cyano-5-methyl-2-oxo-6'-{[2-oxo-2-(p-tolylamino)ethyl]thio}-1'H-spiro-[indoline-3,4'-pyridine]-5'-carboxamide, showed in vitro moderate antibacterial effect against Pseudomonas aeruginosa and good antioxidant properties in a test with 1,1-diphenyl-2-picrylhydrazyl radical. Finally, three of the new compounds were recognized as moderately active herbicide safeners with respect to herbicide 2,4-D in the laboratory experiments on sunflower seedlings.
Assuntos
Isatina , Piridinas , Simulação de Acoplamento Molecular , Indóis/farmacologia , Indóis/química , Espectroscopia de Ressonância MagnéticaRESUMO
The reaction between dithiomalondianilide (N,N'-diphenyldithiomalondiamide) and alkyl 3-aryl-2-cyanoacrylates in the presence of morpholine in the air atmosphere leads to the formation of alkyl 6-amino-4-aryl-7-phenyl-3-(phenylimino)-4,7-dihydro-3H-[1,2]dithiolo[3,4-b]- pyridine-5-carboxylates in 37-72% yields. The same compounds were prepared in 23-65% yields by ternary condensation of aromatic aldehydes, ethyl(methyl) cyanoacetate and dithiomalondianilide. The reaction mechanism is discussed. The structure of ethyl 6-amino-4-(4-methoxyphenyl)-7-phenyl-3-(phenylimino)-4,7-dihydro-3H-[1,2]dithiolo[3,4-b]pyridine-5-carboxylate was confirmed by X-ray crystallography. Two of the prepared compounds showed a moderate growth-stimulating effect on sunflower seedlings. Three of the new compounds were recognized as strong herbicide safeners with respect to herbicide 2,4-D in the laboratory and field experiments on sunflower.
RESUMO
Sulfonimidamides (SIAs) and sulfoximines (SOIs) have attracted attention due to their potential in agriculture and in medicinal chemistry as bioisosteres of biologically active compounds, and new synthetic methods are needed to access and explore these compounds. Herein, we present a light-promoted generation of perfluorinated aromatic nitrenes, from perfluorinated azides, that subsequently are allowed to react with sulfinamides and sulfoxides, generating achiral and chiral SIAs and SOIs. One of the enantiopure SIAs was evaluated as a novel chiral auxiliary in Grignard additions to the imines yielding the product in up to 96:4 diastereomeric ratio.
Assuntos
Química Farmacêutica , IminasRESUMO
Non-invasive, simple, and fast tests for lung cancer diagnostics are one of the urgent needs for clinical practice. The work describes the results of exhaled breath analysis of 112 lung cancer patients and 120 healthy individuals using gas chromatography-mass spectrometry (GC-MS). Volatile organic compound (VOC) peak areas and their ratios were considered for data analysis. VOC profiles of patients with various histological types, tumor localization, TNM stage, and treatment status were considered. The effect of non-pulmonary comorbidities (chronic heart failure, hypertension, anemia, acute cerebrovascular accident, obesity, diabetes) on exhaled breath composition of lung cancer patients was studied for the first time. Significant correlations between some VOC peak areas and their ratios and these factors were found. Diagnostic models were created using gradient boosted decision trees (GBDT) and artificial neural network (ANN). The performance of developed models was compared. ANN model was the most accurate: 82-88% sensitivity and 80-86% specificity on the test data.
RESUMO
Photo-mediated radical dearomatization involving 5-exo-trig cyclizations has proven to be an important route to accessing spirocyclic compounds, whereas 6-exo-trig spirocyclization has been much less explored. In this work, a dearomative annulation cascade is realized through photoredox-mediated C-O bond activation of aromatic carboxylic acids to produce two kinds of spirocyclic frameworks. Mechanistically, the acyl radical is formed through oxidation of triphenylphosphine and subsequent C-O bond cleavage, followed by a 6-exo-trig cyclization/SET/protonation sequence to generate the spiro-chromanone products in an intramolecular manner. Furthermore, the protocol was extended to more challenging intermolecular tandem sequences consisting of C-O bond cleavage, radical addition to an alkene substrate, and 5-exo-trig cyclization to yield complex spirocyclic lactams.
RESUMO
A protocol for stereoselective C-radical addition to a chiral glyoxylate-derived N-sulfinyl imine was developed through visible light-promoted photoredox catalysis, providing a convenient method for the synthesis of unnatural α-amino acids. The developed protocol allows the use of ubiquitous carboxylic acids as radical precursors without prior derivatization. The protocol utilizes near-stoichiometric amounts of the imine and the acid radical precursor in combination with a catalytic amount of an organic acridinium-based photocatalyst. Alternative mechanisms for the developed transformation are discussed and corroborated by experimental and computational studies.