Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Small ; 14(12): e1703571, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29436116

RESUMO

This study uses graphene oxide quantum dots (GOQDs) to enhance the Li+ -ion mobility of a gel polymer electrolyte (GPE) for lithium-ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile-co-vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3-11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion-solvent clusters and immobilize PF6- anions, affording the GPE a high ionic conductivity and a high Li+ -ion transference number (0.77). When assembled into Li|electrolyte|LiFePO4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge-discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion-solvent clusters and degree of Li+ -ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li-metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion-solvent coordination in GPEs and thus improve the performance and lifespan of LIBs.

2.
Opt Lett ; 42(23): 4970-4973, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216158

RESUMO

The two-photon crosslinking of graphene oxide-quantum dots (GOQDs) adopts rose Bengal as the photoactivator to induce the GOQD assembly process. Based on the Förster resonance energy transfer mechanism with oxygen as the crosslinking medium, three-dimensional patterned GOQD microstructures with near diffraction-limit spatial resolution have been fabricated and analyzed by a multiphoton excited fabrication instrument/microscope.

3.
Opt Express ; 22(16): 19726-34, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25321055

RESUMO

In this study, a developed temporal focusing-based femtosecond laser system provides high-throughput multiphoton-induced reduction and ablation of graphene oxide (GO) films. Integrated with a digital micromirror device to locally control the laser pulse numbers, GO-based micropatterns can be quickly achieved instantly. Furthermore, the degree of reduction and ablation can be precisely adjusted via controlling the laser wavelength, power, and pulse number. Compared to point-by-point scanning laser direct writing, this approach offers a high-throughput and multiple-function approach to accomplish a large area of micro-scale patterns on GO films. The high-throughput micropatterning of GO via the temporal focusing-based femtosecond laser system fulfills the requirement of mass production for GO-based applications in microelectronic devices.

4.
ACS Appl Mater Interfaces ; 16(14): 17461-17473, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556803

RESUMO

The phosphate lithium-ion conductor Li1.5Al0.5Ti1.5(PO4)3 (LATP) is an economically attractive solid electrolyte for the fabrication of safe and robust solid-state batteries, but high sintering temperatures pose a material engineering challenge for the fabrication of cell components. In particular, the high surface roughness of composite cathodes resulting from enhanced crystal growth is detrimental to their integration into cells with practical energy density. In this work, we demonstrate that efficient free-standing ceramic cathodes of LATP and LiFePO4 (LFP) can be produced by using a scalable tape casting process. This is achieved by adding 5 wt % of Li2WO4 (LWO) to the casting slurry and optimizing the fabrication process. LWO lowers the sintering temperature without affecting the phase composition of the materials, resulting in mechanically stable, electronically conductive, and free-standing cathodes with a smooth, homogeneous surface. The optimized cathode microstructure enables the deposition of a thin polymer separator attached to the Li metal anode to produce a cell with good volumetric and gravimetric energy densities of 289 Wh dm-3 and 180 Wh kg-1, respectively, on the cell level and Coulombic efficiency above 99% after 30 cycles at 30 °C.

5.
Phys Chem Chem Phys ; 15(10): 3640-5, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23385395

RESUMO

Poly(acrylonitrile-co-vinyl acetate) (PAN-VA) is utilized as a gelation agent to prepare gel-state electrolytes for dye-sensitized solar cell (DSSC) applications. Based on the synergistic effect of PAN-VA and TiO(2) fillers in the electrolyte, the gel-state DSSC can achieve a conversion efficiency higher than that of a liquid counterpart. The high performance of the gel-electrolyte is attributed to the in situ gelation property of the gel-electrolyte, the contribution of the PAN-VA to the charge transfer, as well as the enhancement effect of TiO(2) fillers on the charge transfer at the Pt-electrolyte interface. The experimental results show that the efficiencies of the gel-state cells have little dependence on the conductivity of the electrolytes with various contents of PAN-VA, but are closely related to the penetration situation of the electrolyte in the TiO(2) film. For PAN-VA concentrations ≤15 wt%, the electrolyte can be easily injected at room temperature based on its in situ gelation property. For higher PAN-VA concentrations, good penetration of the high viscous electrolyte can be achieved by elevating the operation temperature. By utilizing a heteroleptic ruthenium dye (coded CYC-B11), gel-state DSSCs with an efficiency of above 10% are obtained. Acceleration tests show that the cell is stable under one-sun illumination at 60 °C.

6.
J Colloid Interface Sci ; 649: 918-928, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37392682

RESUMO

The photocatalytic reduction of CO2 under solar irradiation is an ideal approach to mitigating global warming, and reducing aqueous forms of CO2 that interact strongly with a catalyst (e.g., HCO3-) is a promising strategy to expedite such reductions. This study uses Pt-deposited graphene oxide dots as a model photocatalyst to elucidate the mechanism of HCO3- reduction. The photocatalyst steadily catalyzes the reduction of an HCO3- solution (at pH = 9) containing an electron donor under 1-sun illumination over a period of 60 h to produce H2 and organic compounds (formate, methanol, and acetate). H2 is derived from solution-contained H2O, which undergoes photocatalytic cleavage to produce •H atoms. Isotopic analysis reveals that all of the organics formed via interactions between HCO3- and •H. This study proposes mechanistic steps, which are governed by the reacting behavior of the •H, to correlate the electron transfer steps and product formation of this photocatalysis. This photocatalysis achieves overall apparent quantum efficiency of 27% in the formation of reaction products under monochromatic irradiation at 420 nm. This study demonstrates the effectiveness of aqueous-phase photocatalysis in converting aqueous CO2 into valuable chemicals and the importance of H2O-derived •H in governing the product selectivity and formation kinetics.

7.
Nanoscale ; 15(24): 10232-10243, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37183719

RESUMO

Cancer cells tend to have higher intracellular reactive oxygen species (ROS) levels and are more vulnerable to ROS-generating therapies such as ascorbic acid (H2Asc) therapy, whose potency has been explored by several clinical trials. However, its efficiency is restricted by the requirement of pharmacologically high local H2Asc concentrations. Here, we show that nitrogen-doped graphene oxide dots (NGODs), which are highly crystalline and biocompatible, can serve as a catalytic medium for improving H2Asc cancer therapy at orally achievable physiological H2Asc concentrations. NGODs catalyze H2Asc oxidation for H2O2 and dehydroascorbic acid generation to disrupt cancer cells by consuming intracellular glutathione (GSH) and inducing ROS damage. This is the first study to demonstrate the direct consumption of GSH using a carbon-based nano-catalyst (NGODs), which further expedites tumor killing. In addition, as in our previous study, NGODs can also serve as a highly efficient photosensitizer for photodynamic therapy. Under illumination, NGODs produce a considerable amount of H2O2 in the presence of physiological levels of H2Asc as a hole scavenger and further enhance the therapeutic efficiency. Thus, a concise nanotherapeutic modality could be achieved through the conjunction of multifunctional NGODs and H2Asc to selectively eliminate deep-seated and superficial tumors simultaneously (under 65% of normal cell viability, it kills almost all cancer cells). Note that this level of therapeutic versatility generally requires multiple components and complex manufacturing processes that run into difficulties with FDA regulations and clinical applications. In this study, the concise NGOD-H2Asc nanotherapeutic modality has demonstrated its great potential in cancer therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Ácido Ascórbico/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Glutationa , Linhagem Celular Tumoral
8.
Langmuir ; 27(6): 2834-43, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21319781

RESUMO

A simple and versatile approach is proposed to use the LbL-assembled polypeptide macromolecular assemblies as mediating agents and templates for directed growth of gold nanoparticles and biomimetic silica mineralization, allowing the synthesis of polypeptide/silica and polypeptide/gold nanoparticle/silica composite materials, as well as mesoporous silica (meso-SiO2) and gold nanoparticle/mesoporous silica (Au NP/meso-SiO2). The formation of tubular nanostructures was demonstrated by silicification and growth of gold nanoparticles within macromolecular assemblies formed by poly(L-lysine) (PLL) and poly(L-glutamic acid) (PLGA) using polycarbonate membranes as templates. The experimental data revealed that the silicified macromolecular assemblies adopted mainly sheet/turn conformation. The as-prepared mesoporous silica materials possessed well-defined tubular structures with pore size and porosity depending on the size of sheet/turn aggregates, which is a function of the molecular weight of polypeptides. The directed growth of Au NP and subsequent silica mineralization in the macromolecular assembly resulted in Au NP/meso-SiO2 tubes with uniform nanoparticle size and the as-prepared materials exhibited promising catalytic activity toward the reduction of p-nitrophenol. This approach provides a facile and general method to synthesize organic-inorganic composite materials, oxide and metal-oxide nanomaterials with different compositions and structures.


Assuntos
Ouro/química , Nanoestruturas/química , Peptídeos/síntese química , Dióxido de Silício/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Tamanho da Partícula , Peptídeos/química , Porosidade , Propriedades de Superfície
9.
Biomedicines ; 9(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535466

RESUMO

Since the first clinical cancer treatment in 1978, photodynamic therapy (PDT) technologies have been largely improved and approved for clinical usage in various cancers. Due to the oxygen-dependent nature, the application of PDT is still limited by hypoxia in tumor tissues. Thus, the development of effective strategies for manipulating hypoxia and improving the effectiveness of PDT is one of the most important area in PDT field. Recently, emerging nanotechnology has benefitted progress in many areas, including PDT. In this review, after briefly introducing the mechanisms of PDT and hypoxia, as well as basic knowledge about nanomedicines, we will discuss the state of the art of nanomedicine-based approaches for assisting PDT for treating hypoxic tumors, mainly based on oxygen replenishing strategies and the oxygen dependency diminishing strategies. Among these strategies, we will emphasize emerging trends about the use of nanoscale metal-organic framework (nMOF) materials and the combination of PDT with immunotherapy. We further discuss future perspectives and challenges associated with these trends in both the aspects of mechanism and clinical translation.

10.
Nanoscale ; 13(18): 8431-8441, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33912878

RESUMO

Photodynamic therapy (PDT) receives scholarly attention for its low invasiveness and mild adverse effects. Among the reactive oxygen species for PDT, H2O2 is advantageous for achieving long life and low cytotoxicity. Nitrogen-doped graphene oxide dots (NGODs), which are small (∼4.4 nm) and highly biocompatible, can serve as a photosensitizer for PDT. The charge transfer in NGODs is efficient because the NGOD structure is highly crystalline and its carbon-π orbitals are extensively conjugated with nitrogen-nonbonding orbitals. In the presence of ascorbic acid (AA), to scavenge photogenerated holes, NGODs effectively produce H2O2 under white-light irradiation and their H2O2 rate is proportional to the AA concentration. This AA-supplemented PDT effectively kills lung, head and neck, colon, and oral cancer cells and it is highly safe for normal cells. During PDT, the NGODs are uptaken into the cell body and they produce concentrated H2O2 and subsequently induce both the apoptosis and necrosis pathways for cell death. The unique structure of NGODs confines the transfer of the photogenerated electrons for H2O2 production. This study demonstrates the high potential for efficacious and accurate deployment of the proposed NGOD-AA combination in PDT.


Assuntos
Grafite , Neoplasias , Fotoquimioterapia , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia
11.
Water Sci Technol ; 62(2): 378-86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20651443

RESUMO

This study was conducted to investigate the adsorption and desorption properties of arsenate [As(V)] on nano-sized iron-oxide-coated quartz (IOCQ) through batch experiments. The coating of nano-sized iron oxide on the quartz surface was performed using the heat treatment process which aimed to utilize the adsorption properties of the nano-sized iron oxide and the filtration properties of the quartz. Environmental SEM-EDAX and BET techniques were used to analyze the surface morphology, elemental composition, surface area and the porosity of the adsorbent. SEM-EDAX analyses confirmed that arsenate was adsorbed on the IOCQ surface. BET results showed that the IOCQ adsorbent had higher pore volumes and high specific surface areas compared with the pure quartz. The study revealed that the adsorption rate of As(V) ion was very rapid and reached the equilibrium within 5 min. This study also revealed that almost 100% of As(V) removal was achieved within 5 minutes of adsorption reaction from the initial solution containing 1,000 microg-As(V)/L. The Langmuir adsorption isotherm model suitably explained the sorption characteristics of As(V) onto IOCQ. This desorption study showed that the adsorbent could be reused after reacting with mild HCl solution but the concentration of acid eluant or pH has a great impact on the coated adsorbent surface. The results indicate that the nano-sized iron oxide-coated adsorbent is potentially suitable for removal of arsenate from drinking water.


Assuntos
Arseniatos/química , Compostos Férricos/química , Quartzo/química , Adsorção , Nanotecnologia , Purificação da Água/métodos
12.
Phys Chem Chem Phys ; 11(41): 9489-96, 2009 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19830333

RESUMO

A nanocrystalline TiO(2) film with highly dispersed Zn-doping shows its capability for efficient electron transport in dye-sensitized solar cells (DSSCs). The Zn-doping is conducted via Zn(2+) introduction into a layered titanate followed by hydrothermal treatment and calcination. The Zn-doped films exhibit an elevated electron Fermi level, which may enhance band bending to lower the density of empty trap states. Because of this Zn-doping, the consequent DSSCs can alleviate the decay of light-to-electric energy conversion efficiency due to light intensity reduction. Intensity-modulated spectroscopic analysis reveals that enhanced transport of photogenerated electrons as a result of the trap density minimization is responsible for the high cell performance under low-intensity illumination. A Zn-doping content of ca. 0.4 at% Zn/Ti can enhance the light conversion efficiency by 23% at a solar light intensity as low as 11 mW cm(-2). This technique can significantly extend the indoor application of DSSCs.

13.
ACS Appl Mater Interfaces ; 11(45): 42780-42789, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31618583

RESUMO

High-efficiency, stable bifacial dye-sensitized solar cells (DSSCs) are prepared for application under indoor light conditions. A 3-methoxypropionitrile solvent and cobalt redox couples are utilized to prepare the electrolytes. To obtain the best cell performance, the components of the DSSCs, including electrolytes, photoanodes, and counter electrodes (CEs), are regulated. The experimental results indicate that an electrolyte comprising a Co (II/III) ratio of 0.11/0.025 M, 1.2 M 4-tert-butylpyridine, Y123 dye, a CE with the platinum (Pt) layer thickness of 0.16 nm, and a photoanode with titanium dioxide (TiO2) layer thickness of 10 µm (6 µm main layer and 4 µm scattering layer) are the best conditions under which to achieve a high power conversion efficiency. It is also found that the best cells have high recombination resistance at the photoelectrode/electrolyte interface and low charge transfer resistance at the counter electrode/electrolyte interface, which contributes to, respectively, the high current density and open-circuit voltage of the corresponding cells. This DSSC can achieve efficiencies of 22.66%, 23.48%, and 24.52%, respectively, under T5 light illumination of 201.8, 607.8, and 999.6 lx. For fabrication of bifacial DSSCs with a semitransparent property, photoanodes without the TiO2 scattering layer, as well as an ultrathin Pt film, are utilized. The thicknesses of the TiO2 main layer and Pt film are reregulated. This shows that a Pt film with 0.55 nm thickness has both high transmittance (76.01%) and catalytic activity. By using an 8 µm TiO2 main layer, optimal cell efficiencies of 20.65% and 17.31% can be achieved, respectively, for the front-side and back-side illuminations of 200 lx T5 light. The cells are highly stable during a long-term performance test at both 35 and 50 °C.

14.
ACS Omega ; 4(16): 16925-16934, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31646239

RESUMO

We develop a temperature-programmed pretreatment strategy for converting aliphatic-rich petroleum pitch into a mesophase framework, which can then be activated using KOH to produce high-performance carbons for electric double-layer capacitors (EDLCs). In the pretreatment of pitch at an optimal temperature, both the temperature ramp and holding time influence the mesophase structure, which governs the pore structure and crystallinity of the resulting activated carbon. High carbon microporosity is beneficial to capacitance maximization but detrimental to ion transport. To resolve this problem, we develop a multistep ramp incorporating aliphatic species into the aromatic framework during mesophase formation. This incorporation process produces a mesophase framework that can be activated to form carbons with high crystallinity, thereby enhancing electronic conductivity and hierarchical porosity, which improves ionic conductivity. The resulting carbon electrode is used to assemble a symmetric EDLC, which exhibits a capacitance of 160 F g-1 and excellent high-rate retention in a propylene carbonate solution of N,N-diethyl-N-methylethanaminium tetrafluoroborate. The EDLC delivers a superior specific energy of 40 Wh kg-1 (based on the total carbon mass) within a voltage range of 0-2.7 V and sustained a high energy of 24 Wh kg-1 at a high power of 50 kW kg-1. The findings of this study demonstrate that incorporating aliphatic species into aromatic mesophase frameworks plays a crucial role in regulating the crystallinity and pore structure of pitch-derived carbons for charge storage.

15.
ACS Appl Mater Interfaces ; 10(13): 10955-10964, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29517224

RESUMO

A graphene oxide sponge (GOS) is utilized for the first time as a nanofiller (NF) in printable electrolytes (PEs) based on poly(ethylene oxide) and poly(vinylidene fluoride) for quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The effects of the various concentrations of GOS NFs on the ion diffusivity and conductivity of electrolytes and the performance of the QS-DSSCs are studied. The results show that the presence of GOS NFs significantly increases the diffusivity and conductivity of the PEs. The introduction of 1.5 wt % of GOS NFs decreases the charge-transfer resistance at the Pt-counter electrode/electrolyte interface ( Rpt) and increases the recombination resistance at the photoelectrode/electrolyte interface ( Rct). QS-DSSC utilizing 1.5 wt % GOS NFs can achieve an energy conversion efficiency (8.78%) higher than that found for their liquid counterpart and other reported polymer gel electrolytes/GO NFs based DSSCs. The high energy conversion efficiency is a consequence of the increase in both the open-circuit potential ( Voc) and fill factor with a slight decrease in current density ( Jsc). The cell efficiency can retain 86% of its initial value after a 500 h stability test at 60 °C under dark conditions. The long-term stability of the QS-DSSC with GOS NFs is higher than that without NFs. This result indicates that the GOS NFs do not cause dye-desorption from the photoanode in a long-term stability test, which infers a superior performance of GOS NFs as compared to TiO2 NFs in terms of increasing the efficiency and long-term stability of QS-DSSCs.

16.
Nanoscale ; 10(22): 10721-10730, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29845156

RESUMO

This paper presents a heteroatom doping strategy to manipulate the structure of graphene-based photocatalysts for effective hydrogen production from aqueous solution. Oxygenation of graphene creates a bandgap to produce semiconducting graphene oxide, nitrogen doping extends the resonant π-conjugation to prolong the charge lifetime, and sulfur doping breaks the electron neutrality to facilitate charge transfer. Accordingly, ammonia-treated sulfur-nitrogen-co-doped graphene oxide dots (A-SNGODs) are synthesized by annealing graphene oxide sheets in sulfur-ammonia, oxidizing the sheets into dots, and then hydrothermally treating the dots in ammonia. The A-SNGODs exhibit a high nitrogen content in terms of quaternary and amide groups that are formed through sulfur-mediated reactions. The peripheral amide facilitates orbital conjugations to enhance the photocatalytic activity, whereas the quaternary nitrogen patches vacancy defects to improve stability. The simultaneous presence of electron-withdrawing S and electron-donating N atoms in the A-SNGODs facilitates charge separation and results in reactive electrons. When suspended in an aqueous triethanolamine solution, Pt-deposited A-SNGODs demonstrate a hydrogen-evolution quantum yield of 29% under monochromatic 420 nm irradiation. The A-SNGODs exhibit little activity decay under 6-day visible-light irradiation. This study demonstrates the excellence of the heteroatom-doping strategy in producing stable and active graphene-based materials for photoenergy conversion.

17.
Nanoscale Res Lett ; 13(1): 411, 2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30578467

RESUMO

High-brightness white-light-emitting diodes (w-LEDs) with excellent color quality is demonstrated by using nontoxic nanomaterials. Previously, we have reported the high color quality w-LEDs with heavy-metal phosphor and quantum dots (QDs), which may cause environmental hazards. In the present work, liquid-type white LEDs composed of nontoxic materials, named as graphene and porous silicon quantum dots are fabricated with a high color rendering index (CRI) value gain up to 95. The liquid-typed device structure possesses minimized surface temperature and 25% higher value of luminous efficiency as compare to dispensing-typed structure. Further, the as-prepared device is environment friendly and attributed to low toxicity. The low toxicity and high R9 (87) component values were conjectured to produce new or improve current methods toward bioimaging application.

18.
J Air Waste Manag Assoc ; 57(5): 600-5, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17518226

RESUMO

Catalyst supports composed of titanate nanotubes were prepared from hydrothermal treatment on TiO2 nanoparticles in NaOH followed by HCl washing. The nanotubes exhibited well-defined TiO2 anatase phase after calcination at 400 degrees C. The nanotube aggregates and other commercially available TiO2 nanoparticles, all with surface areas >300 m(2)/g, were impregnated with Cu and examined in selective catalytic reduction of NO with NH3. In catalyst preparation, the nanotubes were found to be more thermally stable than nanoparticles, withstanding agglomeration at elevated temperatures. The Cu species supported on the nanotubes showed a higher catalytic activity than those supported on the nanoparticles. Analysis with temperature programmed reduction, X-ray photoelectron spectroscopy, and NO adsorption reflected that the layered-titanate feature of the tube wall was advantageous for even distribution of the Cu species, thus leading to the high-catalytic activity of the tubular Cu/TiO2 catalyst.


Assuntos
Amônia/química , Cobre/química , Nanotubos/química , Óxido Nítrico/química , Titânio/química , Catálise , Microscopia Eletrônica de Transmissão , Oxirredução , Difração de Raios X
19.
Nanoscale ; 9(24): 8256-8265, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28585974

RESUMO

Fluorescent graphene oxide dots (GODs) are environmentally friendly and biocompatible materials for photoluminescence (PL) applications. In this study, we employed annealing and hydrothermal ammonia treatments at 500 and 140 °C, respectively, to introduce nitrogen functionalities into GODs for enhancing their green-color PL emissions. The hydrothermal treatment preferentially produces pyridinic and amino groups, whereas the annealing treatment produces pyrrolic and amide groups. The hydrothermally treated GODs (A-GODs) present a high conjugation of the nonbonding electrons of nitrogen in pyridinic and amino groups with the aromatic π orbital. This conjugation introduces a nitrogen nonbonding (nN 2p) state 0.3 eV above the oxygen nonbonding state (nO 2p state; the valence band maximum of the GODs). The GODs exhibit excitation-independent green-PL emissions at 530 nm with a maximum quantum yield (QY) of 12% at 470 nm excitation, whereas the A-GODs exhibit a maximum QY of 63%. The transformation of the solvent relaxation-governed π* → nO 2p transition in the GODs to the direct π* → nN 2p transition in the A-GODs possibly accounts for the substantial QY enhancement in the PL emissions. This study elucidates the role of nitrogen functionalities in the PL emissions of graphitic materials and proposes a strategy for designing the electronic structure to promote the PL performance.

20.
J Phys Chem B ; 110(9): 4193-8, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16509714

RESUMO

Preparation of anatase TiO2 nanorods from solutions in the absence of surfactants or templates has rarely been reported. The present work has found that hydrothermal treatment of titanate nanotube suspensions under an acidic environment resulted in the formation of single-crystalline anatase nanorods with a specific crystal-elongation direction. The nanotube suspensions were prepared by treatment of TiO2 in NaOH, followed by mixing with HNO3 to different pH values. The crystal size of the anatase nanoparticles obtained from the hydrothermal treatment increased with the pH of the suspensions, and nanorods with an aspect ratio up to 6 and a long axis along the anatase [001] were obtained at a pH slightly less than 7. A mechanism for the tube-to-rod transformation has been proposed on the basis of the crystalline structures of the tubes and rods. The local shrinkage of the tube walls to form anatase crystallites and the subsequent oriented attachment of the crystallites have been suggested to be the key steps involved in the nanorod formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA