Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 23(19): 5147-58, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24833723

RESUMO

The microtubule cytoskeleton is critical for the generation and maturation of neurons in the developing mammalian nervous system. We have previously shown that mutations in the ß-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities in humans. While it is known that TUBB5 is necessary for the proper generation and migration of neurons, little is understood of the role it plays in neuronal differentiation and connectivity. Here, we report that perturbations to TUBB5 disrupt the morphology of cortical neurons, their neuronal complexity, axonal outgrowth, as well as the density and shape of dendritic spines in the postnatal murine cortex. The features we describe are consistent with defects in synaptic signaling. Cellular-based assays have revealed that TUBB5 substitutions have the capacity to alter the dynamic properties and polymerization rates of the microtubule cytoskeleton. Together, our studies show that TUBB5 is essential for neuronal differentiation and dendritic spine formation in vivo, providing insight into the underlying cellular pathology associated with TUBB5 disease states.


Assuntos
Diferenciação Celular/genética , Córtex Cerebral/metabolismo , Espinhas Dendríticas/metabolismo , Mutação , Neurônios/citologia , Neurônios/metabolismo , Tubulina (Proteína)/genética , Animais , Axônios/metabolismo , Córtex Cerebral/embriologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Camundongos , Microtúbulos/química , Microtúbulos/metabolismo , Neurônios/patologia , Multimerização Proteica , Interferência de RNA
2.
J Vis Exp ; (84): e51139, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24561550

RESUMO

In order to demonstrate the cell-surface localization of a putative transmembrane receptor in cultured neurons, we labeled the protein on the surface of live neurons with a specific primary antibody raised against an extracellular portion of the protein. Given that receptors are trafficked to and from the surface, if cells are permeabilized after fixation then both cell-surface and internal protein will be detected by the same labeled secondary antibody. Here, we adapted a method used to study protein trafficking ("antibody feeding") to differentially label protein that had been internalized by endocytosis during the antibody incubation step and protein that either remained on the cell surface or was trafficked to the surface during this period. The ability to distinguish these two pools of protein was made possible through the incorporation of an overnight blocking step with highly-concentrated unlabeled secondary antibody after an initial incubation of unpermeabilized neurons with a fluorescently-labeled secondary antibody. After the blocking step, permeabilization of the neurons allowed detection of the internalized pool with a fluorescent secondary antibody labeled with a different fluorophore. Using this technique we were able to obtain important information about the subcellular location of this putative receptor, revealing that it was, indeed, trafficked to the cell-surface in neurons. This technique is broadly applicable to a range of cell types and cell-surface proteins, providing a suitable antibody to an extracellular epitope is available.


Assuntos
Imunofluorescência/métodos , Proteínas do Tecido Nervoso/análise , Neurônios/química , Receptores de Superfície Celular/análise , Animais , Especificidade de Anticorpos , Células Cultivadas , Epitopos/análise , Epitopos/imunologia , Hipocampo/citologia , Hipocampo/imunologia , Proteínas do Tecido Nervoso/imunologia , Neurônios/imunologia , Ratos , Receptores de Superfície Celular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA