Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(1): 010501, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23862986

RESUMO

Entanglement is essential to many quantum information applications, but it is easily destroyed by quantum decoherence arising from interaction with the environment. We report the first experimental demonstration of an entanglement-based protocol that is resilient to loss and noise which destroy entanglement. Specifically, despite channel noise 8.3 dB beyond the threshold for entanglement breaking, eavesdropping-immune communication is achieved between Alice and Bob when an entangled source is used, but no such immunity is obtainable when their source is classical. The results prove that entanglement can be utilized beneficially in lossy and noisy situations, i.e., in practical scenarios.

2.
Opt Express ; 12(15): 3573-80, 2004 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-19483888

RESUMO

We use two perpendicular crystals of periodically-poled KTP to directly generate polarization-entangled photon pairs, the majority of which are emitted into a single Gaussian spatial mode. The signal and idler photons have wavelengths of 810 nm and 1550 nm, respectively, and the photon-pair generation rate is 1.2x107 sec-1 for a pump power of 62 mW. The apparatus is compact, flexible, and easily to use.

3.
Phys Rev Lett ; 100(9): 090501, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18352685

RESUMO

We have experimentally demonstrated a decoy-state quantum key distribution scheme (QKD) with a heralded single-photon source based on parametric down-conversion. We used a one-way Bennett-Brassard 1984 protocol with a four states and one-detector phase-coding scheme, which is immune to recently proposed time-shift attacks, photon-number splitting attacks, and can also be proven to be secure against Trojan horse attacks and any other standard individual or coherent attacks. In principle, the setup can tolerate the highest losses or it can give the highest secure key generation rate under fixed losses compared with other practical schemes. This makes it a quite promising candidate for future quantum key distribution systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA