Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
New Phytol ; 222(4): 1816-1831, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724367

RESUMO

Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.


Assuntos
Betula/genética , Casca de Planta/química , Casca de Planta/genética , Caules de Planta/genética , Transcriptoma/genética , Betula/crescimento & desenvolvimento , Vias Biossintéticas/genética , Câmbio/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Lipídeos/química , Meristema/genética , Especificidade de Órgãos , Especificidade da Espécie , Nicho de Células-Tronco , Triterpenos/metabolismo , Madeira/genética
2.
Biotechnol Bioeng ; 115(1): 41-49, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28868788

RESUMO

Enzymatic conversion of arabinoxylan requires α-L-arabinofuranosidases able to remove α-L-arabinofuranosyl residues (α-L-Araf) from both mono- and double-substituted D-xylopyranosyl residues (Xylp) in xylan (i.e., AXH-m and AXH-d activity). Herein, SthAbf62A (a family GH62 α-L-arabinofuranosidase with AXH-m activity) and BadAbf43A (a family GH43 α-L-arabinofuranosidase with AXH-d3 activity), were fused to create SthAbf62A_BadAbf43A and BadAbf43A_SthAbf62A. Both fusion enzymes displayed dual AXH-m,d and synergistic activity toward native, highly branched wheat arabinoxylan (WAX). When using a customized arabinoxylan substrate comprising mainly α-(1 → 3)-L-Araf and α-(1 → 2)-L-Araf substituents attached to disubstituted Xylp (d-2,3-WAX), the specific activity of the fusion enzymes was twice that of enzymes added as separate proteins. Moreover, the SthAbf62A_BadAbf43A fusion removed 83% of all α-L-Araf from WAX after a 20 hr treatment. 1 H NMR analyses further revealed differences in SthAbf62A_BadAbf43 rate of removal of specific α-L-Araf substituents from WAX, where 9.4 times higher activity was observed toward d-α-(1 → 3)-L-Araf compared to m-α-(1 → 3)-L-Araf positions.


Assuntos
Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Xilanos/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Triticum/química , Xilanos/isolamento & purificação
3.
J Biol Chem ; 291(27): 14120-14133, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129264

RESUMO

Glucuronic acid (GlcAp) and/or methylglucuronic acid (MeGlcAp) decorate the major forms of xylan in hardwood and coniferous softwoods as well as many cereal grains. Accordingly, the complete utilization of glucuronoxylans or conversion to sugar precursors requires the action of main chain xylanases as well as α-glucuronidases that release the α- (1→2)-linked (Me)GlcAp side groups. Herein, a family GH115 enzymefrom the marine bacterium Saccharophagus degradans 2-40(T), SdeAgu115A, demonstrated activity toward glucuronoxylan and oligomers thereof with preference toward MeGlcAp linked to internal xylopyranosyl residues. Unique biochemical characteristics of NaCl activation were also observed. The crystal structure of SdeAgu115A revealed a five-domain architecture, with an additional insertion C(+) domain that had significant impact on the domain arrangement of SdeAgu115A monomer and its dimerization. The participation of domain C(+) in substrate binding was supported by reduced substrate inhibition upon introducing W773A, W689A, and F696A substitutions within this domain. In addition to Asp-335, the catalytic essentiality of Glu-216 was revealed by site-specific mutagenesis. A primary sequence analysis suggested that the SdeAgu115A architecture is shared by more than half of GH115 members, thus defining a distinct archetype for GH115 enzymes.


Assuntos
Gammaproteobacteria/enzimologia , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Glicosídeo Hidrolases/química , Biologia Marinha , Modelos Moleculares , Conformação Proteica , Homologia de Sequência de Aminoácidos
4.
Biochim Biophys Acta ; 1860(2): 354-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26518347

RESUMO

BACKGROUND: Galactose oxidase (GaO) selectively oxidizes the primary hydroxyl of galactose to a carbonyl, facilitating targeted chemical derivatization of galactose-containing polysaccharides, leading to renewable polymers with tailored physical and chemical properties. Here we investigate the impact of a family 29 glucomannan binding module on the activity and binding of GaO towards various polysaccharides. Specifically, CBM29-1-2 from Piromyces equi was separately linked to the N- and C-termini of GaO. RESULTS: Both GaO-CBM29 and CBM29-GaO were successfully expressed in Pichia pastoris, and demonstrated enhanced binding to galactomannan, galactoglucomannan and galactoxyloglucan. The position of the CBM29 fusion affected the enzyme function. Particularly, C-terminal fusion led to greatest increases in galactomannan binding and catalytic efficiency, where relative to wild-type GaO, kcat/Km values increased by 7.5 and 19.8 times on guar galactomannan and locust bean galactomannan, respectively. The fusion of CBM29 also induced oligomerization of GaO-CBM29. MAJOR CONCLUSIONS: Similar to impacts of cellulose-binding modules associated with cellulolytic enzymes, increased substrate binding impeded the action of GaO fusions on more concentrated preparations of galactomannan, galactoglucomannan and galactoxyloglucan; this was especially true for GaO-CBM29. Given the N-terminal positioning of the native galactose-binding CBM32 in GaO, the varying impacts of N-terminal versus C-terminal fusion of CBM29-1-2 may reflect competing action of neighboring CBMs. GENERAL SIGNIFICANCE: This study thoroughly examines and discusses the effects of CBM fusion to non-lignocellulytic enzymes on soluble polysaccharides. Herein kinetics of GaO on galactose containing polysaccharides is presented for the first time.


Assuntos
Fusarium/enzimologia , Galactose Oxidase/metabolismo , Mananas/química , Sequência de Aminoácidos , Estabilidade Enzimática , Galactose/química , Galactose Oxidase/química , Dados de Sequência Molecular
5.
Appl Environ Microbiol ; 83(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28778886

RESUMO

We describe here the identification and characterization of a copper radical oxidase from auxiliary activities family 5 (AA5_2) that was distinguished by showing preferential activity toward raffinose. Despite the biotechnological potential of carbohydrate oxidases from family AA5, very few members have been characterized. The gene encoding raffinose oxidase from Colletotrichum graminicola (CgRaOx; EC 1.1.3.-) was identified utilizing a bioinformatics approach based on the known modular structure of a characterized AA5_2 galactose oxidase. CgRaOx was expressed in Pichia pastoris, and the purified enzyme displayed the highest activity on the trisaccharide raffinose, whereas the activity on the disaccharide melibiose was three times lower and more than ten times lower activity was detected on d-galactose at a 300 mM substrate concentration. Thus, the substrate preference of CgRaOx was distinguished clearly from the substrate preferences of the known galactose oxidases. The site of oxidation for raffinose was studied by 1H nuclear magnetic resonance and mass spectrometry, and we confirmed that the hydroxyl group at the C-6 position was oxidized to an aldehyde and that in addition uronic acid was produced as a side product. A new electrospray ionization mass spectrometry method for the identification of C-6 oxidized products was developed, and the formation mechanism of the uronic acid was studied. CgRaOx presented a novel activity pattern in the AA5 family.IMPORTANCE Currently, there are only a few characterized members of the CAZy AA5 protein family. These enzymes are interesting from an application point of view because of their ability to utilize the cheap and abundant oxidant O2 without the requirement of complex cofactors such as FAD or NAD(P). Here, we present the identification and characterization of a novel AA5 member from Colletotrichum graminicola As discussed in the present study, the bioinformatics approach using the modular structure of galactose oxidase was successful in finding a C-6 hydroxyl carbohydrate oxidase having substrate preference for the trisaccharide raffinose. By the discovery of this activity, the diversity of the CAZy AA5 family is increasing.


Assuntos
Proteínas de Bactérias/metabolismo , Colletotrichum/enzimologia , Oxirredutases/metabolismo , Rafinose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Colletotrichum/química , Colletotrichum/genética , Colletotrichum/metabolismo , Galactose/química , Galactose/metabolismo , Cinética , Família Multigênica , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Rafinose/química , Ácidos Urônicos/metabolismo
6.
New Phytol ; 214(4): 1491-1505, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28257170

RESUMO

High acetylation of angiosperm wood hinders its conversion to sugars by glycoside hydrolases, subsequent ethanol fermentation and (hence) its use for biofuel production. We studied the REDUCED WALL ACETYLATION (RWA) gene family of the hardwood model Populus to evaluate its potential for improving saccharification. The family has two clades, AB and CD, containing two genes each. All four genes are expressed in developing wood but only RWA-A and -B are activated by master switches of the secondary cell wall PtNST1 and PtMYB21. Histochemical analysis of promoter::GUS lines in hybrid aspen (Populus tremula × tremuloides) showed activation of RWA-A and -B promoters in the secondary wall formation zone, while RWA-C and -D promoter activity was diffuse. Ectopic downregulation of either clade reduced wood xylan and xyloglucan acetylation. Suppressing both clades simultaneously using the wood-specific promoter reduced wood acetylation by 25% and decreased acetylation at position 2 of Xylp in the dimethyl sulfoxide-extracted xylan. This did not affect plant growth but decreased xylose and increased glucose contents in the noncellulosic monosaccharide fraction, and increased glucose and xylose yields of wood enzymatic hydrolysis without pretreatment. Both RWA clades regulate wood xylan acetylation in aspen and are promising targets to improve wood saccharification.


Assuntos
Regulação da Expressão Gênica de Plantas , Populus/genética , Madeira/metabolismo , Xilanos/metabolismo , Acetilação , Parede Celular/química , Parede Celular/genética , Quimera , Regulação para Baixo , Glucanos/metabolismo , Espectroscopia de Ressonância Magnética , Família Multigênica , Plantas Geneticamente Modificadas , Populus/crescimento & desenvolvimento , Populus/metabolismo , Regiões Promotoras Genéticas , Nicotiana/genética , Madeira/genética , Xilanos/genética , Xilema/metabolismo
7.
Biochim Biophys Acta Gen Subj ; 1861(9): 2398-2405, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28591625

RESUMO

BACKGROUND: The backbone structure of many hemicelluloses is acetylated, which presents a challenge when the objective is to convert corresponding polysaccharides to fermentable sugars or else recover hemicelluloses for biomaterial applications. Carbohydrate esterases (CE) can be harnessed to overcome these challenges. METHODS: Enzymes from different CE families, AnAcXE (CE1), OsAcXE (CE6), and MtAcE (CE16) were compared based on action and position preference towards acetyl-4-O-methylglucuronoxylan (MGX) and acetyl-galactoglucomannan (GGM). To determine corresponding positional preferences, the relative rate of acetyl group released by each enzyme was analyzed by real time 1H NMR. RESULTS: AnAcXE (CE1) showed lowest specific activity towards MGX, where OsAcXE (CE6) and MtAcE were approximately four times more active than AnAcXE (CE1). MtAcE (CE16) was further distinguished by demonstrating 100 times higher activity on GGM compared to AnAcXE (CE1) and OsAcXE (CE6), and five times higher activity on GGM than MGX. Following 24h incubation, all enzymes removed between 78 and 93% of total acetyl content from MGX and GGM, where MtAcE performed best on both substrates. MAJOR CONCLUSIONS: Considering action on MGX, all esterases showed preference for doubly substituted xylopyranosyl residues (2,3-O-acetyl-Xylp). Considering action on GGM, OsAcXE (CE6) preferentially targeted 2-O-acetyl-mannopyranosyl residues (2-O-acetyl-Manp) whereas AnAcXE (CE1) demonstrated highest activity towards 3-O-acetyl-Manp positions; regiopreference of MtAcE (CE16) on GGM was less clear. GENERAL SIGNIFICANCE: The current comparative analysis identifies options to control the position of acetyl group release at initial stages of reaction, and enzyme combinations likely to accelerate deacetylation of major hemicellulose sources.


Assuntos
Carboidratos/química , Esterases/metabolismo , Mananas/química , Xilanos/química , Acetilação , Polissacarídeos/química
8.
Anal Bioanal Chem ; 409(20): 4811-4817, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28577073

RESUMO

Hydroxypropyl xylans with varying degrees of substitution were characterized by size-exclusion chromatography. Molar masses of the samples were determined using two approaches: by conventional calibration with molar mass standards and by a multi-detection method that utilizes the combination of static light scattering, viscometry, and differential refractive index detection. The molar mass results obtained by the multi-detection method were accurate, but required the determination of separate refractive index increments for each structurally different sample. The column calibration approach with standard pullulan samples gave biased results due to the differences in hydrodynamic volumes between pullulans and hydroxypropyl xylans with similar molar masses. The degree of hydroxypropylation affected the chain conformation and compactness of the polymer chains. Mark-Houwink parameters and persistence length values suggested that the hydroxypropyl substituents reduced the flexibility of the xylan chain and made the polymer chain more extended.

9.
Plant Biotechnol J ; 14(1): 387-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25960248

RESUMO

Cell wall hemicelluloses and pectins are O-acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O-acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody-tissue-specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall-bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a ß-1,4-endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1-expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.


Assuntos
Acetilesterase/metabolismo , Arabidopsis/genética , Aspergillus/enzimologia , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Caules de Planta/metabolismo , Acetilação , Parede Celular/enzimologia , Etanol/metabolismo , Pectinas/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Xilanos/metabolismo
10.
Appl Microbiol Biotechnol ; 100(8): 3499-510, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26649737

RESUMO

The consumption of fiber-rich foods such as cereal bran is highly recommended due to its beneficial health effects. Pre-fermentation of bran with lactic acid bacteria can be used to improve the otherwise impaired flavor and textural qualities of bran-rich products. These positive effects are attributed to enzymatic modification of bran components and the production of functional metabolites like organic acids and exopolysaccharides such as dextrans. The aim of this study was to investigate dextran production in wheat and rye bran by fermentation with two Weissella confusa strains. Bran raw materials were analyzed for their chemical compositions and mineral content. Microbial growth and acidification kinetics were determined from the fermentations. Both strains produced more dextran in rye bran in which the fermentation-induced acidification was slower and the acidification lag phase longer than in wheat bran. Higher dextran production in rye bran is expected to be due to the longer period of optimal pH for dextran synthesis during fermentation. The starch content of wheat bran was higher, which may promote isomaltooligosaccharide formation at the expense of dextran production. W. confusa Cab3 produced slightly higher amounts of dextran than W. confusa VTT E-90392 in all raw materials. Fermentation with W. confusa Cab3 also resulted in lower residual fructose content which has technological relevance. The results indicate that wheat and particularly rye bran are promising matrices for producing technologically significant amounts of dextran, which facilitates the use of nutritionally valuable raw bran in food applications.


Assuntos
Dextranos/biossíntese , Fibras na Dieta/metabolismo , Secale/metabolismo , Triticum/metabolismo , Weissella/metabolismo , Meios de Cultura/metabolismo , Fibras na Dieta/microbiologia , Fermentação , Secale/microbiologia , Triticum/microbiologia
11.
Prep Biochem Biotechnol ; 46(8): 822-832, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26861959

RESUMO

The dextransucrase gene from Weissella confusa Cab3, having an open reading frame of 4.2 kb coding for 1,402 amino acids, was amplified, cloned, and expressed in Lactococcus lactis. The recombinant dextransucrase, WcCab3-rDSR was expressed as extracellular enzyme in M17 medium with a specific activity of 1.5 U/mg which after purification by PEG-400 fractionation gave 6.1 U/mg resulting in 4-fold purification. WcCab3-rDSR was expressed as soluble and homogeneous protein of molecular mass, approximately, 180 kDa as analyzed by SDS-PAGE. It displayed maximum enzyme activity at 35°C at pH 5.0 in 50 mM sodium acetate buffer. WcCab3-rDSR gave Km of 6.2 mM and Vm of 6.3 µmol/min/mg. The characterization of dextran synthesized by WcCab3-rDSR by Fourier transform infrared and nuclear magnetic resonance spectroscopic analyses revealed the structural similarities with the dextran produced by the native dextransucrase. The modeled structure of WcCab3-rDSR using the crystal structures of dextransucrase from Lactobacillus reuteri (protein data bank, PDB id: 3HZ3) and Streptococcus mutans (PDB id: 3AIB) as templates depicted the presence of different domains such as A, B, C, IV, and V. The domains A and B are circularly permuted in nature having (ß/α)8 triose phosphate isomerase-barrel fold making the catalytic core of WcCab3-rDSR. The structure superposition and multiple sequence alignment analyses of WcCab3-rDSR with available structures of enzymes from family 70 GH suggested that the amino acid residue Asp510 acts as a nucleophile, Glu548 acts as a catalytic acid/base, whereas Asp621 acts as a transition-state stabilizer and these residues are found to be conserved within the family.


Assuntos
Glucosiltransferases/química , Weissella/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Dextranos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Lactococcus lactis/genética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Weissella/química , Weissella/genética , Weissella/metabolismo
12.
Food Technol Biotechnol ; 54(1): 36-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27904391

RESUMO

The aim of this study is to develop a new technology for making traditional Lithuanian non-alcoholic beverage kvass from fermented cereals by extending the spectrum of raw materials (extruded rye) and applying new biotechnological resources (xylanolytic enzymes and lactic acid bacteria (LAB)) to improve its functional properties. Arabinoxylans in extruded rye were very efficiently hydrolysed into oligosaccharides by xylanolytic complex Ceremix Plus MG. Using Ceremix Plus MG and LAB fermentation, the yield of arabinoxylooligosaccharides and xylooligosaccharides in beverage was increased to 300 and 1100 mg/L, respectively. Beverages fermented by LAB had lower pH values and ethanol volume fraction compared to the yeast-fermented beverage. The acceptability of the beverage fermented by Lactobacillus sakei was higher than of Pediococcus pentosaceus- or yeast- -fermented beverages and similar to the acceptability of commercial kvass made from malt extract. The results showed that extruded rye, xylanolytic enzymes and LAB can be used for production of novel and safe high-value non-alcoholic beverages.

13.
J Food Sci Technol ; 53(1): 775-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26787998

RESUMO

Brewer's spent grain (BSG), a by-product of malting of barley in the production of malt extract, was used as an ingredient in extruded barley-based snacks in order to improve the nutritional value of the snacks and widen the applications of this by-product in food sector. The effects of the extrusion parameters on the selected properties of the snacks were studied. Snacks with different ingredients including whole grain barley flour, BSG, whey protein isolate (WPI), barley starch and waxy corn starch were produced in 5 separate trials using a co-rotating twin-screw extruder. Extrusion parameters were water content of the mass (17-23 %), screw speed (200-500 rpm) and temperature of the last section and die (110-150 °C). Expansion, hardness and water content of the snacks were determined. Snacks containing barley flour and BSG (10 % of solids) had small expansion and high hardness. Addition of WPI (20 % of solids) increased expansion only slightly. Snacks with high expansion and small hardness were obtained when part of the barley flour was replaced with starch (barley or waxy corn). Yet, the highest expansion and the smallest hardness were achieved when barley flour was used with barley starch and WPI without BSG. Furthermore, expansion increased by increasing screw speed and decreasing water content of the mass in most of the trials. This study showed that BSG is a suitable material for extruded snacks rich in dietary fiber. Physical properties of the snacks could be improved by using barley or waxy corn starch and WPI.

14.
Biochim Biophys Acta ; 1840(10): 3106-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25016078

RESUMO

BACKGROUND: The detailed characterization of arabinoxylan-active enzymes, such as double-substituted xylan arabinofuranosidase activity, is still a challenging topic. Ad hoc chromogenic substrates are useful tools and can reveal subtle differences in enzymatic behavior. In this study, enzyme selectivity on natural substrates has been compared with enzyme selectivity towards aryl-glycosides. This has proven to be a suitable approach to understand how artificial substrates can be used to characterize arabinoxylan-active α-l-arabinofuranosidases (Abfs). METHODS: Real-time NMR using a range of artificial chromogenic, synthetic pseudo-natural and natural substrates was employed to determine the hydrolytic abilities and specificity of different Abfs. RESULTS: The way in which synthetic di-arabinofuranosylated substrates are hydrolyzed by Abfs mirrors the behavior of enzymes on natural arabinoxylo-oligosaccharide (AXOS). Family GH43 Abfs that are strictly specific for mono-substituted d-xylosyl moieties (AXH-m) do not hydrolyze synthetic di-arabinofuranosylated substrates, while those specific for di-substituted moieties (AXH-d) remove a single l-arabinofuranosyl (l-Araf) group. GH51 Abfs, which are supposedly AXH-m enzymes, can release l-Araf from disubstituted d-xylosyl moieties, when these are non-reducing terminal groups. CONCLUSIONS AND GENERAL SIGNIFICANCE: The present study reveals that although the activity of Abfs on artificial substrates can be quite different from that displayed on natural substrates, enzyme specificity is well conserved. This implies that carefully chosen artificial substrates bearing di-arabinofuranosyl d-xylosyl moieties are convenient tools to probe selectivity in new Abfs. Moreover, this study has further clarified the relative promiscuity of GH51 Abfs, which can apparently hydrolyze terminal disubstitutions in AXOS, albeit less efficiently than mono-substituted motifs.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Oligossacarídeos/química , Bacillus/genética , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/genética , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/genética , Especificidade por Substrato/fisiologia
15.
Biochim Biophys Acta ; 1840(1): 626-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24140392

RESUMO

BACKGROUND: The development of enzyme-mediated glycosynthesis using glycoside hydrolases is still an inexact science, because the underlying molecular determinants of transglycosylation are not well understood. In the framework of this challenge, this study focused on the family GH51 α-l-arabinofuranosidase from Thermobacillus xylanilyticus, with the aim to understand why the mutation of position 344 provokes a significant modification of the transglycosylation/hydrolysis partition. METHODS: Detailed kinetic analysis (kcat, KM, pKa determination and time-course NMR kinetics) and saturation transfer difference nuclear magnetic resonance spectroscopy was employed to determine the synthetic and hydrolytic ability modification induced by the redundant N344 mutation disclosed in libraries from directed evolution. RESULTS: The mutants N344P and N344Y displayed crippled hydrolytic abilities, and thus procured improved transglycosylation yields. This behavior was correlated with an increased pKa of the catalytic nucleophile (E298), the pKa of the acid/base catalyst remaining unaffected. Finally, mutations at position 344 provoked a pH-dependent product inhibition phenomenon, which is likely to be the result of a significant modification of the proton sharing network in the mutants. CONCLUSIONS AND GENERAL SIGNIFICANCE: Using a combination of biochemical and biophysical methods, we have studied TxAbf-N344 mutants, thus revealing some fundamental details concerning pH modulation. Although these results concern a GH51 α-l-arabinofuranosidase, it is likely that the general lessons that can be drawn from them will be applicable to other glycoside hydrolases. Moreover, the effects of mutations at position 344 on the transglycosylation/hydrolysis partition provide clues as to how TxAbf can be further engineered to obtain an efficient transfuranosidase.


Assuntos
Arabinose/metabolismo , Bacillaceae/enzimologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mutação/genética , Bacillaceae/genética , Bacillaceae/metabolismo , Catálise , Domínio Catalítico , Cromatografia em Camada Fina , Glicosídeo Hidrolases/química , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Especificidade por Substrato
16.
BMC Biotechnol ; 15: 56, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084671

RESUMO

BACKGROUND: Expressing microbial polysaccharide-modifying enzymes in plants is an attractive approach to custom tailor plant lignocellulose and to study the importance of wall structures to plant development. Expression of α-glucuronidases in plants to modify the structures of glucuronoxylans has not been yet attempted. Glycoside hydrolase (GH) family 115 α-glucuronidases cleave the internal α-D-(4-O-methyl)glucopyranosyluronic acid ((Me)GlcA) from xylans or xylooligosaccharides. In this work, a GH115 α-glucuronidase from Schizophyllum commune, ScAGU115, was expressed in Arabidopsis thaliana and targeted to apoplast. The transgene effects on native xylans' structures, plant development, and lignocellulose saccharification were evaluated and compared to those of knocked out glucuronyltransferases AtGUX1 and AtGUX2. RESULTS: The ScAGU115 extracted from cell walls of Arabidopsis was active on the internally substituted aldopentaouronic acid (XUXX). The transgenic plants did not show any change in growth or in lignocellulose saccharification. The cell wall (Me)GlcA and other non-cellulosic sugars, as well as the lignin content, remained unchanged. In contrast, the gux1gux2 double mutant showed a 70% decrease in (Me)GlcA to xylose molar ratio, and, interestingly, a 60% increase in the xylose content. Whereas ScAGU115-expressing plants exhibited a decreased signal in native secondary walls from the monoclonal antibody UX1 that recognizes (Me)GlcA on non-acetylated xylan, the signal was not affected after wall deacetylation. In contrast, gux1gux2 mutant was lacking UX1 signals in both native and deacetylated cell walls. This indicates that acetyl substitution on the xylopyranosyl residue carrying (Me)GlcA or on the neighboring xylopyranosyl residues may restrict post-synthetic modification of xylans by ScAGU115 in planta. CONCLUSIONS: Active GH115 α-glucuronidase has been produced for the first time in plants. The cell wall-targeted ScAGU115 was shown to affect those glucuronate substitutions of xylan, which are accessible to UX1 antibody and constitute a small fraction in Arabidopsis, whereas majority of (Me)GlcA substitutions were resistant, most likely due to the shielding by acetyl groups. Plants expressing ScAGU115 did not show any defects under laboratory conditions indicating that the UX1 epitope of xylan is not essential under these conditions. Moreover the removal of the UX1 xylan epitope does not affect lignocellulose saccharification.


Assuntos
Glicosídeo Hidrolases/biossíntese , Lignina/metabolismo , Schizophyllum/enzimologia , Xilanos/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/enzimologia , Regulação Enzimológica da Expressão Gênica , Glucuronatos/metabolismo , Ácido Glucurônico/metabolismo , Glicosídeo Hidrolases/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lignina/genética , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo
17.
Food Microbiol ; 46: 418-427, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475311

RESUMO

With their broad functional properties, lactic acid bacteria derived high molar mass exopolysaccharides (EPS) and oligosaccharides are of great interest for food, medical and pharmaceutical industry. EPS formation by 123 strains of Weissella cibaria and Weissella confusa, was evaluated. Dextran formation from sucrose was observed for all tested strains while 18 strains produced fructan in addition to dextran. Six isolates synthesized a highly ropy polymer from glucose associated with the formation of a cell-bound, capsular polysaccharide (CPS) composed of glucose, O-acetyl groups and two unidentified monomer components. The soluble EPSs of nine strains were identified as low α-1,3-branched dextran, levan and inulin type polymers using NMR. In addition to glucan and fructan, W. confusa produced gluco- and fructooligosaccharides. Partial dextransucrase and fructansucrase sequences were characterized in the selected Weissella strains. Our study reports the first structural characterization of fructan type EPS from Weissella as well as the first Weissella strain producing inulin. Production of more than one EPS-type by single strains may have high potential for development of applications combining EPS technological and nutritional benefits.


Assuntos
Cápsulas Bacterianas/química , Cápsulas Bacterianas/metabolismo , Weissella/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Weissella/química , Weissella/classificação , Weissella/genética
18.
Glycobiology ; 24(6): 494-506, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24637390

RESUMO

O-Acetylglucuronoxylans (AcGX) in Arabidopsis thaliana carry acetyl residues on the 2-O and/or 3-O positions of the xylopyranosyl (Xylp) units, but the distribution of different O-acetylated Xylp units is partly unclear. We studied a possible correlation of xylan acetylation and the activities of different glycosyltransferases involved in xylan biosynthesis by analyzing the distribution of O-acetyl substituents on AcGX from Arabidopsis wild-type and mutants irx7, irx9-1, irx10, irx14 and gux1gux2. The relative contents of the Xylp structural units were determined with quantitative two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy. In the wild type, the degree of acetylation (DA) was 60%. Mono- and diacetylated Xylp units constituted 44 and 6% of the AcGX backbone, respectively; while (4-O-methyl)-glucopyranosyluronic acid (1 → 2)-linked Xylp units, most of which also carry 3-O-acetylation, represented 13%. The DA was decreased in irx7, irx9-1 and irx14 due to the decrease in monoacetylation (2-O and 3-O), indicating a relationship between acetylation and other AcGX biosynthetic processes. The possible interactions that could lead to such changes have been discussed. No change in DA was observed in irx10 and gux1gux2, but monoacetylation was nonetheless elevated in gux1gux2. This indicates that acetylation occurs after addition of GlcpA to the xylan backbone. Mass fragmentation analysis suggests that the prevalent acetylation pattern is the acetyl group added on every other Xylp unit.


Assuntos
Glicosiltransferases/biossíntese , Xilanos/biossíntese , Acetilação , Arabidopsis/enzimologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Mutação , Xilanos/química , Xilanos/metabolismo
19.
Plant Physiol ; 163(3): 1107-17, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24019426

RESUMO

The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Parede Celular/genética , Mutação , Folhas de Planta/genética , Acetilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Parede Celular/metabolismo , Teste de Complementação Genética , Glucanos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Xilanos/metabolismo
20.
Biotechnol Biofuels Bioprod ; 17(1): 47, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539167

RESUMO

BACKGROUND: Oxidative enzymes targeting lignocellulosic substrates are presently classified into various auxiliary activity (AA) families within the carbohydrate-active enzyme (CAZy) database. Among these, the fungal AA3 glucose-methanol-choline (GMC) oxidoreductases with varying auxiliary activities are attractive sustainable biocatalysts and important for biological function. CAZy AA3 enzymes are further subdivided into four subfamilies, with the large AA3_2 subfamily displaying diverse substrate specificities. However, limited numbers of enzymes in the AA3_2 subfamily are currently biochemically characterized, which limits the homology-based mining of new AA3_2 oxidoreductases. Importantly, novel enzyme activities may be discovered from the uncharacterized parts of this large subfamily. RESULTS: In this study, phylogenetic analyses employing a sequence similarity network (SSN) and maximum likelihood trees were used to cluster AA3_2 sequences. A total of 27 AA3_2 proteins representing different clusters were selected for recombinant production. Among them, seven new AA3_2 oxidoreductases were successfully produced, purified, and characterized. These enzymes included two glucose dehydrogenases (TaGdhA and McGdhA), one glucose oxidase (ApGoxA), one aryl alcohol oxidase (PsAaoA), two aryl alcohol dehydrogenases (AsAadhA and AsAadhB), and one novel oligosaccharide (gentiobiose) dehydrogenase (KiOdhA). Notably, two dehydrogenases (TaGdhA and KiOdhA) were found with the ability to utilize phenoxy radicals as an electron acceptor. Interestingly, phenoxy radicals were found to compete with molecular oxygen in aerobic environments when serving as an electron acceptor for two oxidases (ApGoxA and PsAaoA), which sheds light on their versatility. Furthermore, the molecular determinants governing their diverse enzymatic functions were discussed based on the homology model generated by AlphaFold. CONCLUSIONS: The phylogenetic analyses and biochemical characterization of AA3_2s provide valuable guidance for future investigation of AA3_2 sequences and proteins. A clear correlation between enzymatic function and SSN clustering was observed. The discovery and biochemical characterization of these new AA3_2 oxidoreductases brings exciting prospects for biotechnological applications and broadens our understanding of their biological functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA