Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Development ; 151(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912552

RESUMO

The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.


Assuntos
Biologia do Desenvolvimento , Biologia do Desenvolvimento/tendências , Humanos , Animais , Metabolômica , Redes e Vias Metabólicas
2.
Development ; 147(11)2020 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-32540896

RESUMO

Developmental biologists have frequently pushed the frontiers of modern biomedical research. From the discovery and characterization of novel signal transduction pathways to exploring the molecular underpinnings of genetic inheritance, transcription, the cell cycle, cell death and stem cell biology, studies of metazoan development have historically opened new fields of study and consistently revealed previously unforeseen avenues of clinical therapies. From this perspective, it is not surprising that our community is now an integral part of the current renaissance in metabolic research. Amidst the global rise in metabolic syndrome, the discovery of novel signaling roles for metabolites, and the increasing links between altered metabolism and many human diseases, we as developmental biologists can contribute skills and expertise that are uniquely suited for investigating the mechanisms underpinning human metabolic health and disease. Here, we summarize the opportunities and challenges that our community faces, and discuss how developmental biologists can make unique and valuable contributions to the field of metabolism and physiology.


Assuntos
Biologia do Desenvolvimento , Doenças Metabólicas/metabolismo , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Humanos , Doenças Metabólicas/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Oogênese , Ouriços-do-Mar/crescimento & desenvolvimento , Ouriços-do-Mar/metabolismo , Transdução de Sinais
3.
Dev Biol ; 475: 234-244, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33582116

RESUMO

Sustaining life requires efficient uptake of nutrients and conversion to useable forms. Almost everything about this process is dynamic. Nutrient availability fluctuates and changing environmental conditions impose new demands that can tip the metabolic equilibrium from biosynthesis and macromolecule storage to energy expenditure. At the same time, the organism itself changes, particularly during the rapid growth and differentiation in early development and also later in life as the adult ages. Here we review what has been learned from Drosophila melanogaster as an experimental model about the connections between external signals, signaling pathways, tissues and organs that allow animals to balance energy storage with expenditure in the face of change, both intrinsic and extrinsic.


Assuntos
Drosophila melanogaster/embriologia , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Nutrientes , Transdução de Sinais
4.
Development ; 146(17)2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31399469

RESUMO

The dramatic growth that occurs during Drosophila larval development requires rapid conversion of nutrients into biomass. Many larval tissues respond to these biosynthetic demands by increasing carbohydrate metabolism and lactate dehydrogenase (LDH) activity. The resulting metabolic program is ideally suited for synthesis of macromolecules and mimics the manner by which cancer cells rely on aerobic glycolysis. To explore the potential role of Drosophila LDH in promoting biosynthesis, we examined how Ldh mutations influence larval development. Our studies unexpectedly found that Ldh mutants grow at a normal rate, indicating that LDH is dispensable for larval biomass production. However, subsequent metabolomic analyses suggested that Ldh mutants compensate for the inability to produce lactate by generating excess glycerol-3-phosphate (G3P), the production of which also influences larval redox balance. Consistent with this possibility, larvae lacking both LDH and G3P dehydrogenase (GPDH1) exhibit growth defects, synthetic lethality and decreased glycolytic flux. Considering that human cells also generate G3P upon inhibition of lactate dehydrogenase A (LDHA), our findings hint at a conserved mechanism in which the coordinate regulation of lactate and G3P synthesis imparts metabolic robustness to growing animal tissues.


Assuntos
Drosophila melanogaster/fisiologia , Glicerolfosfato Desidrogenase/metabolismo , L-Lactato Desidrogenase/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Açúcares/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Feminino , Glicerolfosfato Desidrogenase/genética , Glicólise/genética , Homeostase/genética , L-Lactato Desidrogenase/genética , Ácido Láctico/biossíntese , Masculino , Mutação , NAD/metabolismo , Oxirredução
5.
Semin Cell Dev Biol ; 138: 81-82, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35970667
6.
Development ; 144(18): 3193-3198, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28928279

RESUMO

Despite the fact that metabolic studies played a prominent role in the early history of developmental biology research, the field of developmental metabolism was largely ignored following the advent of modern molecular biology. Metabolism, however, has recently re-emerged as a focal point of biomedical studies and, as a result, developmental biologists are once again exploring the chemical and energetic forces that shape growth, development and maturation. In May 2017, a diverse group of scientists assembled at the EMBO/EMBL Symposium 'Metabolism in Time and Space' to discuss how metabolism influences cellular and developmental processes. The speakers not only described how metabolic flux adapts to the energetic needs of a developing organism, but also emphasized that metabolism can directly regulate developmental progression. Overall, and as we review here, this interdisciplinary meeting provided a valuable forum to explore the interface between developmental biology and metabolism.


Assuntos
Biologia do Desenvolvimento , Metabolismo , Animais , Ciclo Celular , Humanos , Imunidade , Desenvolvimento Vegetal , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 114(6): 1353-1358, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115720

RESUMO

L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Glutaratos/metabolismo , Glicólise , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Linhagem Celular , Metilação de DNA , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Glutaratos/química , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Estereoisomerismo
8.
Food Microbiol ; 70: 76-84, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29173643

RESUMO

In the beverage fermentation industry, especially at the craft or micro level, there is a movement to incorporate as many local ingredients as possible to both capture terroir and stimulate local economies. In the case of craft beer, this has traditionally only encompassed locally sourced barley, hops, and other agricultural adjuncts. The identification and use of novel yeasts in brewing lags behind. We sought to bridge this gap by bio-prospecting for wild yeasts, with a focus on the American Midwest. We isolated 284 different strains from 54 species of yeast and have begun to determine their fermentation characteristics. During this work, we found several isolates of five species that produce lactic acid and ethanol during wort fermentation: Hanseniaspora vineae, Lachancea fermentati, Lachancea thermotolerans, Schizosaccharomyces japonicus, and Wickerhamomyces anomalus. Tested representatives of these species yielded excellent attenuation, lactic acid production, and sensory characteristics, positioning them as viable alternatives to lactic acid bacteria (LAB) for the production of sour beers. Indeed, we suggest a new LAB-free paradigm for sour beer production that we term "primary souring" because the lactic acid production and resultant pH decrease occurs during primary fermentation, as opposed to kettle souring or souring via mixed culture fermentation.


Assuntos
Cerveja/análise , Microbiologia de Alimentos/métodos , Ácido Láctico/metabolismo , Leveduras/metabolismo , Cerveja/microbiologia , Etanol/análise , Etanol/metabolismo , Fermentação , Humanos , Ácido Láctico/análise , Paladar , Leveduras/classificação , Leveduras/genética
9.
Methods ; 68(1): 105-15, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24631891

RESUMO

Recent research using Drosophila melanogaster has seen a resurgence in studies of metabolism and physiology. This review focuses on major methods used to conduct this work. These include protocols for dietary interventions, measurements of triglycerides, cholesterol, glucose, trehalose, and glycogen, stains for lipid detection, and the use of gas chromatography-mass spectrometry (GC-MS) to detect major polar metabolites. It is our hope that this will provide a useful framework for both new and current researchers in the field.


Assuntos
Drosophila/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica , Animais , Drosophila/genética
10.
PLoS One ; 19(1): e0287865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170735

RESUMO

Drosophila melanogaster larval development relies on a specialized metabolic state that utilizes carbohydrates and other dietary nutrients to promote rapid growth. One unique feature of the larval metabolic program is that Lactate Dehydrogenase (Ldh) activity is highly elevated during this growth phase when compared to other stages of the fly life cycle, indicating that Ldh serves a key role in promoting juvenile development. Previous studies of larval Ldh activity have largely focused on the function of this enzyme at the whole animal level, however, Ldh expression varies significantly among larval tissues, raising the question of how this enzyme promotes tissue-specific growth programs. Here we characterize two transgene reporters and an antibody that can be used to study Ldh expression in vivo. We find that all three tools produce similar Ldh expression patterns. Moreover, these reagents demonstrate that the larval Ldh expression pattern is complex, suggesting the purpose of this enzyme varies across cell types. Overall, our studies validate a series of genetic and molecular reagents that can be used to study glycolytic metabolism in the fly.


Assuntos
Drosophila melanogaster , L-Lactato Desidrogenase , Animais , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Glicólise/genética
11.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895259

RESUMO

Drosophila larval growth requires efficient conversion of dietary nutrients into biomass. Lactate Dehydrogenase (Ldh) and Glycerol-3-phosphate dehydrogenase (Gpdh1) support larval biosynthetic metabolism by maintaining NAD+/NADH redox balance and promoting glycolytic flux. Consistent with the cooperative functions of Ldh and Gpdh1, the loss of both enzymes, but neither single enzyme, induces a developmental arrest. However, Ldh and Gpdh1 exhibit complex and often mutually exclusive expression patterns, suggesting that the Gpdh1; Ldh double mutant lethal phenotype could be mediated nonautonomously. Here we find that the developmental arrest displayed by the double mutants extends beyond simple metabolic disruption and instead stems, in part, from changes in systemic growth factor signaling. Specifically, we demonstrate that this synthetic lethality is linked to the upregulation of Upd3, a cytokine involved in the Jak/Stat signaling pathway. Moreover, we demonstrate that either loss of the Upd3 or dietary administration of the steroid hormone 20-hydroxyecdysone (20E) rescue the synthetic lethal phenotype of Gpdh1; Ldh double mutants. Together, these findings demonstrate that metabolic disruptions within a single tissue can nonautonomously modulate interorgan signaling to ensure synchronous developmental growth.

12.
Mol Neurodegener ; 19(1): 13, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282024

RESUMO

BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.


Assuntos
Transporte Axonal , NAD , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Glicólise , Homeostase , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
13.
Elife ; 122024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240746

RESUMO

The ease of genetic manipulation in Drosophila melanogaster using the Gal4/UAS system has been beneficial in addressing key biological questions. Current modifications of this methodology to temporally induce transgene expression require temperature changes or exposure to exogenous compounds, both of which have been shown to have detrimental effects on physiological processes. The recently described auxin-inducible gene expression system (AGES) utilizes the plant hormone auxin to induce transgene expression and is proposed to be the least toxic compound for genetic manipulation, with no obvious effects on Drosophila development and survival in one wild-type strain. Here, we show that auxin delays larval development in another widely used fly strain, and that short- and long-term auxin exposure in adult Drosophila induces observable changes in physiology and feeding behavior. We further reveal a dosage response to adult survival upon auxin exposure, and that the recommended auxin concentration for AGES alters feeding activity. Furthermore, auxin-fed male and female flies exhibit a significant decrease in triglyceride levels and display altered transcription of fatty acid metabolism genes. Although fatty acid metabolism is disrupted, auxin does not significantly impact adult female fecundity or progeny survival, suggesting AGES may be an ideal methodology for studying limited biological processes. These results emphasize that experiments using temporal binary systems must be carefully designed and controlled to avoid confounding effects and misinterpretation of results.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Alimentar/fisiologia , Ácidos Graxos/metabolismo
14.
J Clin Invest ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743486

RESUMO

Tumor cells are known to undergo considerable metabolic reprogramming to meet their unique demands and drive tumor growth. At the same time, this reprogramming may come at a cost with resultant metabolic vulnerabilities. The small molecule L-2-hdroxyglutarate (L-2HG) is elevated in the most common histology of renal cancer. Similar to other oncometabolites, L-2HG has the potential to profoundly impact gene expression. Here, we demonstrate that L-2HG remodels amino acid metabolism in renal cancer cells through the combined effects on histone methylation and RNA N6-methyladenosine (m6A). The combined effects of L-2HG result in a metabolic liability that renders tumors cells reliant on exogenous serine to support proliferation, redox homeostasis, and tumor growth. In concert with these data, high L-2HG kidney cancers demonstrates reduced expression of multiple serine biosynthetic enzymes. Collectively, our data indicate that high L-2HG renal tumors could be specifically targeted by strategies that limit serine availability to tumors.

15.
Development ; 137(20): 3501-11, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20843862

RESUMO

Environmental conditions can have a major impact on developmental progression in animals. For example, when C. elegans larvae encounter harsh conditions they can reversibly halt the passage of developmental time by forming a long-lived dauer larva at the end of the second larval stage. Here, we show that the period homolog lin-42, known to control developmental time, also acts as a component of a switch that mediates dauer entry. Loss of lin-42 function renders animals hypersensitive to dauer formation under stressful conditions, whereas misexpression of lin-42 in the pre-dauer stage inhibits dauer formation, indicating that lin-42 acts as a negative regulator of this life history decision. These phenotypes place LIN-42 in opposition to the ligand-free form of the nuclear receptor DAF-12, which indirectly senses environmental conditions and helps to integrate external cues into developmental decisions. Mutations that impair DAF-12 ligand binding are exquisitely sensitive to the absence of lin-42, whereas overexpression of LIN-42 can suppress the dauer constitutive phenotype of a ligand-insensitive daf-12 mutant, suggesting that LIN-42 and DAF-12 are intimate partners in controlling the decision to become a dauer larva. The functional outputs of Period family proteins and nuclear receptors also converge in other organisms, suggesting that the relationship between lin-42 and daf-12 represents an ancient genetic framework for responding to environmental stimuli.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Sinais (Psicologia) , Meio Ambiente , Estágios do Ciclo de Vida/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Caenorhabditis elegans/fisiologia , Primers do DNA/genética , Proteínas Circadianas Period/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/fisiologia , Técnicas do Sistema de Duplo-Híbrido
16.
Curr Protoc ; 3(8): e870, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37639638

RESUMO

The use of Drosophila melanogaster for studies of toxicology has grown considerably in the last decade. The Drosophila model has long been appreciated as a versatile and powerful model for developmental biology and genetics because of its ease of handling, short life cycle, low cost of maintenance, molecular genetic accessibility, and availability of a wide range of publicly available strains and data resources. These features, together with recent unique developments in genomics and metabolomics, make the fly model especially relevant and timely for the development of new approach methodologies and movements toward precision toxicology. Here, we offer a perspective on how flies can be leveraged to identify risk factors relevant to environmental exposures and human health. First, we review and discuss fundamental toxicologic principles for experimental design with Drosophila. Next, we describe quantitative and systems genetics approaches to resolve the genetic architecture and candidate pathways controlling susceptibility to toxicants. Finally, we summarize the current state and future promise of the emerging field of Drosophila metabolomics for elaborating toxic mechanisms. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Humanos , Drosophila melanogaster/genética , Exposição Ambiental , Genômica
17.
bioRxiv ; 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37398276

RESUMO

Drosophila melanogaster larval development relies on a specialized metabolic state that utilizes carbohydrates and other dietary nutrients to promote rapid growth. One unique feature of the larval metabolic program is that Lactate Dehydrogenase (Ldh) activity is highly elevated during this growth phase when compared to other stages of the fly life cycle, indicating that Ldh serves a key role in promoting juvenile development. Previous studies of larval Ldh activity have largely focused on the function of this enzyme at the whole animal level, however, Ldh expression varies significantly among larval tissues, raising the question of how this enzyme promotes tissue-specific growth programs. Here we characterize two transgene reporters and an antibody that can be used to study Ldh expression in vivo . We find that all three tools produce similar Ldh expression patterns. Moreover, these reagents demonstrate that the larval Ldh expression pattern is complex, suggesting the purpose of this enzyme varies across cell types. Overall, our studies validate a series of genetic and molecular reagents that can be used to study glycolytic metabolism in the fly.

18.
bioRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711506

RESUMO

The intracellular bacterium Wolbachia is a common symbiont of many arthropods and nematodes, well studied for its impacts on host reproductive biology. However, its broad success as a vertically transmitted infection cannot be attributed to manipulations of host reproduction alone. Using the Drosophila melanogaster model and their natively associated Wolbachia strain "wMel", we show that Wolbachia infection supports fly development and buffers against nutritional stress. Wolbachia infection across several fly genotypes and a range of nutrient conditions resulted in reduced pupal mortality, increased adult emergence, and larger size. We determined that the exogenous supplementation of pyrimidines rescued these phenotypes in the Wolbachia-free, flies suggesting that Wolbachia plays a role in providing this metabolite that is normally limiting for fly growth. Additionally, Wolbachia was sensitive to host pyrimidine metabolism: Wolbachia titers increased upon transgenic knockdown of the Drosophila de novo pyrimidine synthesis pathway but not knockdown of the de novo purine synthesis pathway. We propose that Wolbachia acts as a nutritional symbiont to supplement fly development and enhance host fitness.

19.
J Vis Exp ; (193)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37036230

RESUMO

Human industries generate hundreds of thousands of chemicals, many of which have not been adequately studied for environmental safety or effects on human health. This deficit of chemical safety information is exacerbated by current testing methods in mammals that are expensive, labor-intensive, and time-consuming. Recently, scientists and regulators have been working to develop new approach methodologies (NAMs) for chemical safety testing that are cheaper, more rapid, and reduce animal suffering. One of the key NAMs to emerge is the use of invertebrate organisms as replacements for mammalian models to elucidate conserved chemical modes of action across distantly related species, including humans. To advance these efforts, here, we describe a method that uses the fruit fly, Drosophila melanogaster, to assess chemical safety. The protocol describes a simple, rapid, and inexpensive procedure to measure the viability and feeding behavior of exposed adult flies. In addition, the protocol can be easily adapted to generate samples for genomic and metabolomic approaches. Overall, the protocol represents an important step forward in establishing Drosophila as a standard model for use in precision toxicology.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Adulto , Humanos , Genômica , Comportamento Alimentar , Medição de Risco , Mamíferos
20.
Aging (Albany NY) ; 15(4): 947-981, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36849157

RESUMO

The astrocyte-neuron lactate shuttle hypothesis posits that glial-generated lactate is transported to neurons to fuel metabolic processes required for long-term memory. Although studies in vertebrates have revealed that lactate shuttling is important for cognitive function, it is uncertain if this form of metabolic coupling is conserved in invertebrates or is influenced by age. Lactate dehydrogenase (Ldh) is a rate limiting enzyme that interconverts lactate and pyruvate. Here we genetically manipulated expression of Drosophila melanogaster lactate dehydrogenase (dLdh) in neurons or glia to assess the impact of altered lactate metabolism on invertebrate aging and long-term courtship memory at different ages. We also assessed survival, negative geotaxis, brain neutral lipids (the core component of lipid droplets) and brain metabolites. Both upregulation and downregulation of dLdh in neurons resulted in decreased survival and memory impairment with age. Glial downregulation of dLdh expression caused age-related memory impairment without altering survival, while upregulated glial dLdh expression lowered survival without disrupting memory. Both neuronal and glial dLdh upregulation increased neutral lipid accumulation. We provide evidence that altered lactate metabolism with age affects the tricarboxylic acid (TCA) cycle, 2-hydroxyglutarate (2HG), and neutral lipid accumulation. Collectively, our findings indicate that the direct alteration of lactate metabolism in either glia or neurons affects memory and survival but only in an age-dependent manner.


Assuntos
Drosophila melanogaster , L-Lactato Desidrogenase , Animais , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Astrócitos/metabolismo , Transtornos da Memória/metabolismo , Ácido Láctico/metabolismo , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA