Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 28(39): 14090-9, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22950638

RESUMO

Hematite (α-Fe(2)O(3)) is a nontoxic, stable, versatile material that is widely used in catalysis and sensors. Its functionality in sensing organic molecules such as acetone is of great interest because it can result in potential medical applications. In this report, microwave irradiation is applied in the preparation of one-dimensional (1D) α-FeOOH, thereby simplifying our previous hydrothermal method and reducing the reaction time to just a few minutes. Upon calcination, the sample was converted to porous α-Fe(2)O(3) nanorods, which were then decorated homogeneously by fine Au particles, yielding Au/1D α-Fe(2)O(3) at nominally 3 wt % Au. After calcination, the sample was tested as a potential sensor for acetone in the parts per million range and compared to a similarly loaded Pt sample and the pure 1D α-Fe(2)O(3) support. Gold addition results in a much enhanced response whereas Pt confers little or no improvement. From tests on acetone in the 1-100 ppm range in humid air, Au/1D α-Fe(2)O(3) has a fast response, short recovery time, and an almost linear response to the acetone concentration. The optimum working temperature was found to be 270 °C, which was judged to be a compromise between the thermal activation of lattice oxygen in hematite and the propensity for acetone adsorption. The surface reaction was investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and a possible sensing mechanism is proposed. The presence of Au nanoparticles is believed to promote the dissociation of molecular oxygen better in replenishing O vacancies, thereby increasing the instantaneous supply of lattice oxygen to the oxidation of acetone (to H(2)O and CO(2)), which proceeds through an adsorbed acetate intermediate. This work contributes to the development of next-generation sensors, which offer ultrahigh detection capabilities for organic molecules.


Assuntos
Acetona/química , Compostos Férricos/química , Ouro/química , Micro-Ondas , Compostos Férricos/síntese química , Tamanho da Partícula , Propriedades de Superfície
2.
Phys Chem Chem Phys ; 13(34): 15690-8, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21799973

RESUMO

The preferential oxidation (PROX) of CO in the presence of H(2) is an important step in the production of pure H(2) for industrial applications. In this report, two sonochemical methods (S1 and S2) were used to prepare highly dispersed Ru catalysts supported on mesoporous TiO(2) (TiO(2)(MSP)) for the PROX reaction, in which a reaction gas mixture containing 1% CO + 1% O(2) + 18% CO(2) + 78% H(2) was used. The supported Ru catalysts performed better than the supported Au and Pt catalysts, and the S1 and S2 methods are superior to the impregnation method. The Ru/TiO(2)(MSP) catalysts were active for the PROX reaction below 200 °C and good for the methanation reactions of CO and CO(2) above 200 °C. The presence of residual chlorine in the catalysts severely suppressed their PROX reaction activity, and a higher dispersion of Ru particles led to better catalytic performances. The addition of Au in the Ru/TiO(2)(MSP) catalyst also caused a poorer catalytic activity for both the PROX and the methanation reactions. TPR results showed that in the active catalysts prepared by the S1 and S2 methods, the well dispersed Ru particles, after calcination in air, had a stronger interaction with the support than those in the catalyst prepared by the impregnation method and in the Au-Ru/TiO(2)(MSP) catalyst. In situ CO absorption experiments performed with the diffusion reflectance Fourier transform infra red (DRIFT) method showed that the bridged adsorbed CO species on isolated Ru(0) sites correlated with the catalytic performances, indicating that these isolated Ru(0) sites are the most active sites of the Ru/TiO(2)(MSP) catalysts in the PROX reaction.

3.
Chemistry ; 16(4): 1202-11, 2010 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-19918811

RESUMO

Three catalytic oxidation reactions have been studied: The ultraviolet (UV) light induced photocatalytic decomposition of the synthetic dye sulforhodamine B (SRB) in the presence of TiO(2) nanostructures in water, together with two reactions employing Au/TiO(2) nanostructure catalysts, namely, CO oxidation in air and the decomposition of formaldehyde under visible light irradiation. Four kinds of TiO(2) nanotubes and nanorods with different phases and compositions were prepared for this study, and gold nanoparticle (Au-NP) catalysts were supported on some of these TiO(2) nanostructures (to form Au/TiO(2) catalysts). FTIR emission spectroscopy (IES) measurements provided evidence that the order of the surface OH regeneration ability of the four types of TiO(2) nanostructures studied gave the same trend as the catalytic activities of the TiO(2) nanostructures or their respective Au/TiO(2) catalysts for the three oxidation reactions. Both IES and X-ray photoelectron spectroscopy (XPS) proved that anatase TiO(2) had the strongest OH regeneration ability among the four types of TiO(2) phases or compositions. Based on these results, a model for the surface OH group generation, absorption, and activation of molecular oxygen has been proposed: The oxygen vacancies at the bridging O(2-) sites on TiO(2) surfaces dissociatively absorb water molecules to form OH groups that facilitate adsorption and activation of O(2) molecules in nearby oxygen vacancies by lowering the absorption energy of molecular O(2). A new mechanism for the photocatalytic formaldehyde decomposition with the Au/TiO(2) catalysts is also proposed, based on the photocatalytic activity of the Au-NPs under visible light. The Au-NPs absorb the light owing to the surface plasmon resonance effect and mediate the electron transfers that the reaction needs.

4.
Langmuir ; 25(16): 9480-6, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19719230

RESUMO

A deposition-precipitation (DP) process was used to prepare silica-titania core-shell pebbles decorated with nanocrystalline gold suitable for low-temperature catalytic oxidation of carbon monoxide (CO). The microstructure, phase content, crystallography, and catalytic activity were correlated with the pH (3-8), aging time (15, 30, 60 min), and heat treatment employed for gold crystallization (200-400 degrees C). A homogeneous metal distribution, high gold loading (3.7-4.4 wt %), and superior interfacial adhesion between gold and titania were obtained when the support pebbles were prepared at 600 degrees C, a temperature lower than that required for the anatase-to-rutile transformation. Nucleation and growth of {111} faceted gold was favored at mid-pH (6.4-8), while smaller crystals (<7.5 nm) were obtained at short aging times (

5.
Langmuir ; 24(16): 8576-82, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18605709

RESUMO

CO oxidation and decomposition behaviors over nanosized 3% Au/alpha-Fe2O3 catalyst and over the alpha-Fe2O3 support were studied in situ via thermogravimetry coupled to on-line FTIR spectroscopy (TG-FTIR), which was used to obtain temperature-programmed reduction (TPR) curves and evolved gas analysis. The catalyst was prepared by a sonication-assisted Au colloid based method and had a Au particle size in the range of 2-5 nm. Carburization studies of H 2-prereduced samples were also made in CO gas. According to gravimetry, for the 3% Au/alpha-Fe2O3 catalyst, there were three distinct stages of CO interaction with the Au catalyst but only two stages for the catalyst support. At low temperatures (

6.
Langmuir ; 24(9): 4655-60, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18348586

RESUMO

A two-stage hydrothermal process was developed for the synthesis of highly dispersed Au colloids. In the first stage, a novel glucose-derived polymer template was prepared by the hydrothermal treatment of glucose at 160 degrees C. This template was then further used in the next step to synthesize highly dispersed gold (Au) colloids by hydrothermal treatment with HAuCl(4.) The templates treated at 160 degrees C with changing reaction times had different templating effects toward Au species. The 3-h treated template was able tightly adhere to the Au colloids. As a result, an unusual stability was observed for the prepared Au particles that could be repeatedly precipitated and redispersed with the template in H(2)O and were also stable against heating (below 160 degrees C) and aging. Meanwhile, the 5-h and 7-h treated templates had much poorer templating effects to Au species, leading to severe aggregation of the Au colloids immobilized on them. The various templating effects were correlated to the different structural features of the templates. Compared to the 5- or 7-h treated templates that were deeply carbonized, the 3-h treated template was only slightly carbonized, thus possessing a lot of functional and hydrophilic O-containing groups that could bind to Au species. These differences in templating ability were also observed in the Au samples prepared by the sonication-assisted method. The highly dispersed Au colloids immobilized on the 3-h treated template were tested for CO oxidation, and a good catalytic activity and stability for CO oxidation was observed.


Assuntos
Glucanos/síntese química , Glucanos/ultraestrutura , Coloide de Ouro/síntese química , Monóxido de Carbono/química , Catálise , Glucanos/química , Coloide de Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Micro-Ondas , Oxirredução , Tamanho da Partícula , Espectrofotometria , Ultrassom
7.
Langmuir ; 23(11): 5971-7, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17469856

RESUMO

Copper oxide with various morphologies was synthesized by the hydrolysis of Cu(ac)2 with urea under mild hydrothermal conditions. In the synthesis, a series of organic amines with one or two amine groups (monoamine and diamine), including isobutylamine, octylamine (OLA), dodecylamine, octadecylamine (monoamines), ethylenediamine dihydrochloride, and hexamethylenediamine (diamines), was used as the "structure-directing agent". The monoamines led to the formation of one-dimensional (1D) aggregates of the copper oxide precursor particles (Pre-CuO), while the diamines led to the formation of two-dimensional (2D) aggregates. In both cases, the shorter carbon-chain amine molecules showed a stronger structure-directing function than that of the longer carbon-chain amine molecules. Next, in a series of syntheses, OLA was selected for further study, and the experimental parameters were systematically manipulated. When the hydrolysis was adjusted to a very slow rate by coupling the hydrolysis reaction with an esterification reaction, 1D aggregates of Pre-CuO were formed; when the hydrolysis rate was in the middle range, spherical Pre-CuO architectures composed of smaller linear aggregates were formed. However, under the high hydrolysis rates achieved by increasing the precipitation agent (urea) or by conducting the reaction at high temperatures (>/=120 degrees C), only Pre-CuO nanoparticles with a featureless morphology were formed. The formed spherical Pre-CuO architectures can be converted to a porous structure (CuOx) after removing the OLA molecules via calcination. Compared to the 1D and 2D aggregates, this porous architecture is highly thermally stable and did not collapse even after calcination at 500 degrees C. Preliminary results showed that the porous structure can be used both as a catalyst support and as a catalyst for the oxidation of CO at low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA