Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38961847

RESUMO

Dietary potassium deficiency causes stimulation of sodium reabsorption leading to increased risk in blood pressure elevation. The distal convoluted tubule is the main rheostat linking plasma K+ levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by Kir4.1/5.1; decrease in intracellular Cl-; activation of WNK4, interaction and phosphorylation of Ste20/SPS1-related Proline/Alanine-rich Kinase (SPAK); binding of the calcium-binding protein 39 (cab39) adaptor protein to SPAK leading to its trafficking to the apical membrane; and SPAK binding, phosphorylating, and activating NCC. As Kidney-Specific With-No-Lysine (K) Kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and L-WNK1 and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice are not hyperkalemic. While wild-type mice under low dietary K+ conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in the KS-WNK1, did not change under the low K+ diet. Thus, in the absence of KS-WNK1 the transporter has lost its sensitivity to low plasma K+. We also show that under low K+ conditions, in the absence of KS-WNK1, there is no formation of WNK bodies. These bodies are observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.

2.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695074

RESUMO

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Assuntos
Desamino Arginina Vasopressina , Túbulos Renais Coletores , Camundongos Knockout , Animais , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Desamino Arginina Vasopressina/farmacologia , Capacidade de Concentração Renal/efeitos dos fármacos , Arginina Vasopressina/metabolismo , Masculino , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Camundongos , Aquaporina 2/metabolismo , Aquaporina 2/genética , Antidiuréticos/farmacologia , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Camundongos Endogâmicos C57BL , Privação de Água , Concentração Osmolar , Sódio/urina , Sódio/metabolismo , Vasopressinas/metabolismo , Benzazepinas
3.
Handb Exp Pharmacol ; 283: 249-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37563251

RESUMO

Transporters of the solute carrier family 12 (SLC12) carry inorganic cations such as Na+ and/or K+ alongside Cl across the plasma membrane of cells. These tightly coupled, electroneutral, transporters are expressed in almost all tissues/organs in the body where they fulfil many critical functions. The family includes two key transporters participating in salt reabsorption in the kidney: the Na-K-2Cl cotransporter-2 (NKCC2), expressed in the loop of Henle, and the Na-Cl cotransporter (NCC), expressed in the distal convoluted tubule. NCC and NKCC2 are the targets of thiazides and "loop" diuretics, respectively, drugs that are widely used in clinical medicine to treat hypertension and edema. Bumetanide, in addition to its effect as a loop diuretic, has recently received increasing attention as a possible therapeutic agent for neurodevelopmental disorders. This chapter also describes how over the past two decades, the pharmacology of Na+ independent transporters has expanded significantly to provide novel tools for research. This work has indeed led to the identification of compounds that are 100-fold to 1000-fold more potent than furosemide, the first described inhibitor of K-Cl cotransport, and identified compounds that possibly directly stimulate the function of the K-Cl cotransporter. Finally, the recent cryo-electron microscopy revolution has begun providing answers as to where and how pharmacological agents bind to and affect the function of the transporters.


Assuntos
Cloretos , Simportadores de Cloreto de Sódio-Potássio , Humanos , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Cloretos/metabolismo , Microscopia Crioeletrônica , Membro 3 da Família 12 de Carreador de Soluto , Cátions/metabolismo
4.
Am J Physiol Cell Physiol ; 324(5): C1171-C1178, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036298

RESUMO

A primary function of intercalated cells in the distal tubule of the kidney is to maintain pH homeostasis. For example, type B intercalated cells secrete bicarbonate largely through the action of the apical Cl-/HCO3- exchanger, pendrin, which helps correct metabolic alkalosis. Since both the K-Cl cotransporter, KCC3a and pendrin colocalize to the apical region of type B and non-A, non-B intercalated cells and since both are upregulated in models of metabolic alkalosis, such as with dietary NaHCO3 loading, we raised the possibility that apical KCC3a facilitates pendrin-mediated bicarbonate secretion, such as through apical Cl- recycling. The purpose of this study was to determine if KCC3a abundance changes through intake of bicarbonate alone or through bicarbonate plus its accompanying cation, and if it requires a direct interaction with pendrin or the renin-angiotensin-aldosterone system. We observed that KCC3a protein abundance, but not mRNA, increases in a mouse model of metabolic alkalosis, achieved with dietary NaHCO3 or KHCO3 intake. Bicarbonate ion increases KCC3a abundance, both in vivo and in vitro, independently of the accompanying cation. Moreover, bicarbonate intake upregulates KCC3a independently of aldosterone or angiotensin II. Since NaHCO3 intake increased KCC3a abundance in wild-type as well as in pendrin knockout mice, this KCC3a upregulation by bicarbonate does not depend on a direct interaction with pendrin. We conclude that increased extracellular bicarbonate, as observed in models of metabolic alkalosis, directly raises KCC3a abundance independently of angiotensin II, aldosterone, or changes in KCC3a transcription and does not involve a direct interaction with pendrin.NEW & NOTEWORTHY KCC3a expression is stimulated in alkalemia. This paper shows that bicarbonate itself is mediating this effect through a posttranscriptional mechanism. The paper also shows that this phenomenon is not mediated by aldosterone or angiotensin II.


Assuntos
Alcalose , Bicarbonatos , Animais , Camundongos , Bicarbonatos/metabolismo , Aldosterona/farmacologia , Aldosterona/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Rim/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Alcalose/metabolismo , Proteínas de Transporte de Ânions/genética
5.
Am J Physiol Renal Physiol ; 324(6): F521-F531, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995926

RESUMO

The objective of this study was to understand the response of mice lacking insulin-regulated aminopeptidase (IRAP) to an acute water load. For mammals to respond appropriately to acute water loading, vasopressin activity needs to decrease. IRAP degrades vasopressin in vivo. Therefore, we hypothesized that mice lacking IRAP have an impaired ability to degrade vasopressin and, thus, have persistent urinary concentration. Age-matched 8- to 12-wk-old IRAP wild-type (WT) and knockout (KO) male mice were used for all experiments. Blood electrolytes and urine osmolality were measured before and 1 h after water load (∼2 mL sterile water via intraperitoneal injection). Urine was collected from IRAP WT and KO mice for urine osmolality measurements at baseline and after 1 h administration of the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). Immunofluorescence and immunoblot analysis were performed on kidneys at baseline and after 1 h acute water load. IRAP was expressed in the glomerulus, thick ascending loop of Henle, distal tubule, connecting duct, and collecting duct. IRAP KO mice had elevated urine osmolality compared with WT mice due to higher membrane expression of aquaporin 2 (AQP2), which was restored to that of controls after administration of OPC-31260. IRAP KO mice developed hyponatremia after an acute water load because they were unable to increase free water excretion due to increased surface expression of AQP2. In conclusion, IRAP is required to increase water excretion in response to an acute water load due to persistent vasopressin stimulation of AQP2.NEW & NOTEWORTHY Insulin-regulated aminopeptidase (IRAP) degrades vasopressin, but its role in urinary concentration and dilution is unknown. Here, we show that IRAP-deficient mice have a high urinary osmolality at baseline and are unable to excrete free water in response to water loading. These results reveal a novel regulatory role for IRAP in urine concentration and dilution.


Assuntos
Aquaporina 2 , Insulina , Animais , Masculino , Camundongos , Aminopeptidases/genética , Aminopeptidases/metabolismo , Aquaporina 2/genética , Aquaporina 2/metabolismo , Insulina/metabolismo , Mamíferos/metabolismo , Pressão Osmótica , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Água/metabolismo
6.
Kidney Int ; 101(1): 79-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774558

RESUMO

Following acute injury to the kidney, macrophages play an important role in recovery of functional and structural integrity, but organ fibrosis and progressive functional decline occur with incomplete recovery. Pro-resolving macrophages are characterized by increased cyclooxygenase 2 (COX-2) expression and this expression was selectively increased in kidney macrophages following injury and myeloid-specific COX-2 deletion inhibited recovery. Deletion of the myeloid prostaglandin E2 (PGE2) receptor, E-type prostanoid receptor 4 (EP4), mimicked effects seen with myeloid COX-2-/- deletion. PGE2-mediated EP4 activation induced expression of the transcription factor MafB in kidney macrophages, which upregulated anti-inflammatory genes and suppressed pro-inflammatory genes. Myeloid Mafb deletion recapitulated the effects seen with either myeloid COX-2 or EP4 deletion following acute kidney injury, with delayed recovery, persistent presence of pro-inflammatory kidney macrophages, and increased kidney fibrosis. Thus, our studies identified a previously unknown mechanism by which prostaglandins modulate macrophage phenotype following acute organ injury and provide new insight into mechanisms underlying detrimental kidney effects of non-steroidal anti-inflammatory drugs that inhibit cyclooxygenase activity.


Assuntos
Injúria Renal Aguda , Receptores de Prostaglandina E Subtipo EP4 , Injúria Renal Aguda/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Humanos , Fator de Transcrição MafB , Prostaglandinas , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo
7.
J Am Soc Nephrol ; 32(5): 1037-1052, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33619052

RESUMO

BACKGROUND: AKI is characterized by abrupt and reversible kidney dysfunction, and incomplete recovery leads to chronic kidney injury. Previous studies by us and others have indicated that macrophage infiltration and polarization play key roles in recovery from AKI. The role in AKI recovery played by IFN regulatory factor 4 (IRF4), a mediator of polarization of macrophages to the M2 phenotype, is unclear. METHODS: We used mice with myeloid or macrophage cell-specific deletion of Irf4 (MΦ Irf4-/- ) to evaluate Irf4's role in renal macrophage polarization and development of fibrosis after severe AKI. RESULTS: Surprisingly, although macrophage Irf4 deletion had a minimal effect on early renal functional recovery from AKI, it resulted in decreased renal fibrosis 4 weeks after severe AKI, in association with less-activated macrophages. Macrophage Irf4 deletion also protected against renal fibrosis in unilateral ureteral obstruction. Bone marrow-derived monocytes (BMDMs) from MΦ Irf4-/- mice had diminished chemotactic responses to macrophage chemoattractants, with decreased activation of AKT and PI3 kinase and increased PTEN expression. PI3K and AKT inhibitors markedly decreased chemotaxis in wild-type BMDMs, and in a cultured macrophage cell line. There was significant inhibition of homing of labeled Irf4-/- BMDMs to postischemic kidneys. Renal macrophage infiltration in response to AKI was markedly decreased in MΦ Irf4-/- mice or in wild-type mice with inhibition of AKT activity. CONCLUSIONS: Deletion of Irf4 from myeloid cells protected against development of tubulointerstitial fibrosis after severe ischemic renal injury in mice, due primarily to inhibition of AKT-mediated monocyte recruitment to the injured kidney and reduced activation and subsequent polarization into a profibrotic M2 phenotype.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Fatores Reguladores de Interferon/fisiologia , Ativação de Macrófagos/fisiologia , Células Mieloides/metabolismo , Traumatismo por Reperfusão/complicações , Injúria Renal Aguda/metabolismo , Animais , Modelos Animais de Doenças , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
8.
Am J Physiol Renal Physiol ; 320(4): F569-F577, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522414

RESUMO

Ischemic heart disease is the leading cause of death worldwide and is frequently comorbid with chronic kidney disease. Physiological communication is known to occur between the heart and the kidney. Although primary dysfunction in either organ can induce dysfunction in the other, a clinical entity known as cardiorenal syndrome, mechanistic details are lacking. Here, we used a model of experimental myocardial infarction (MI) to test effects of chronic cardiac ischemia on acute and chronic kidney injury. Surprisingly, chronic cardiac damage protected animals from subsequent acute ischemic renal injury, an effect that was accompanied by evidence of chronic kidney hypoxia. The protection observed post-MI was similar to protection observed in a separate group of healthy animals housed in ambient hypoxic conditions prior to kidney injury, suggesting a common mechanism. There was evidence that chronic cardiac injury activates renal hypoxia-sensing pathways. Increased renal abundance of several glycolytic enzymes following MI suggested that a shift toward glycolysis may confer renal ischemic preconditioning. In contrast, effects on chronic renal injury followed a different pattern, with post-MI animals displaying worsened chronic renal injury and fibrosis. These data show that although chronic cardiac injury following MI protected against acute kidney injury via activation of hypoxia-sensing pathways, it worsened chronic kidney injury. The results further our understanding of cardiorenal signaling mechanisms and have implications for the treatment of heart failure patients with associated renal disease.NEW & NOTEWORTHY Experimental myocardial infarction (MI) protects from subsequent ischemic acute kidney injury but worsens chronic kidney injury. Observed protection from ischemic acute kidney injury after MI was accompanied by chronic kidney hypoxia and increased renal abundance of hypoxia-inducible transcripts. These data support the idea that MI confers protection from renal ischemic injury via chronic renal hypoxia and activation of downstream hypoxia-inducible signaling pathways.


Assuntos
Injúria Renal Aguda/metabolismo , Síndrome Cardiorrenal/complicações , Hipóxia/metabolismo , Precondicionamento Isquêmico , Infarto do Miocárdio/complicações , Injúria Renal Aguda/complicações , Injúria Renal Aguda/patologia , Animais , Síndrome Cardiorrenal/fisiopatologia , Coração/fisiopatologia , Insuficiência Cardíaca/metabolismo , Rim/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo
9.
Am J Physiol Renal Physiol ; 317(4): F825-F838, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364380

RESUMO

Hypomagnesemia is associated with reduced kidney function and life-threatening complications and sustains hypokalemia. The distal convoluted tubule (DCT) determines final urinary Mg2+ excretion and, via activity of the Na+-Cl- cotransporter (NCC), also plays a key role in K+ homeostasis by metering Na+ delivery to distal segments. Little is known about the mechanisms by which plasma Mg2+ concentration regulates NCC activity and how low-plasma Mg2+ concentration and K+ concentration interact to modulate NCC activity. To address this, we performed dietary manipulation studies in mice. Compared with normal diet, abundances of total NCC and phosphorylated NCC (pNCC) were lower after short-term (3 days) or long-term (14 days) dietary Mg2+ restriction. Altered NCC activation is unlikely to play a role, since we also observed lower total NCC abundance in mice lacking the two NCC-activating kinases, STE20/SPS-1-related proline/alanine-rich kinase and oxidative stress response kinase-1, after Mg2+ restriction. The E3 ubiquitin-protein ligase NEDD4-2 regulates NCC abundance during dietary NaCl loading or K+ restriction. Mg2+ restriction did not lower total NCC abundance in inducible nephron-specific neuronal precursor cell developmentally downregulated 4-2 (NEDD4-2) knockout mice. Total NCC and pNCC abundances were similar after short-term Mg2+ or combined Mg2+-K+ restriction but were dramatically lower compared with a low-K+ diet. Therefore, sustained NCC downregulation may serve a mechanism that enhances distal Na+ delivery during states of hypomagnesemia, maintaining hypokalemia. Similar results were obtained with long-term Mg2+-K+ restriction, but, surprisingly, NCC was not activated after long-term K+ restriction despite lower plasma K+ concentration, suggesting significant differences in distal tubule adaptation to acute or chronic K+ restriction.


Assuntos
Hipopotassemia/metabolismo , Deficiência de Magnésio/metabolismo , Ubiquitina-Proteína Ligases Nedd4/biossíntese , Animais , Dieta , Regulação para Baixo , Túbulos Renais Distais/metabolismo , Magnésio/sangue , Deficiência de Magnésio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/genética , Fosforilação , Potássio/sangue , Deficiência de Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/biossíntese , Membro 3 da Família 12 de Carreador de Soluto/genética
10.
Am J Physiol Renal Physiol ; 315(4): F781-F790, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412704

RESUMO

With no lysine kinase 4 (WNK4) is essential to activate the thiazide-sensitive NaCl cotransporter (NCC) along the distal convoluted tubule, an effect central to the phenotype of familial hyperkalemic hypertension. Although effects on potassium and sodium channels along the connecting and collecting tubules have also been documented, WNK4 is typically believed to have little role in modulating sodium chloride reabsorption along the thick ascending limb of the loop of Henle. Yet wnk4-/- mice (knockout mice lacking WNK4) do not demonstrate the hypocalciuria typical of pure distal convoluted tubule dysfunction. Here, we tested the hypothesis that WNK4 also modulates bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) function along the thick ascending limb. We confirmed that w nk4-/- mice are hypokalemic and waste sodium chloride, but are also normocalciuric. Results from Western blots suggested that the phosphorylated forms of both NCC and NKCC2 were in lower abundance in wnk4-/- mice than in controls. This finding was confirmed by immunofluorescence microscopy. Although the initial response to furosemide was similar in wnk4-/- mice and controls, the response was lower in the knockout mice when reabsorption along the distal convoluted tubule was inhibited. Using HEK293 cells, we showed that WNK4 increases the abundance of phosphorylated NKCC2. More supporting evidence that WNK4 may modulate NKCC2 emerges from a mouse model of WNK4-mediated familial hyperkalemic hypertension in which more phosphorylated NKCC2 is present than in controls. These data indicate that WNK4, in addition to modulating NCC, also modulates NKCC2, contributing to its physiological function in vivo.


Assuntos
Cloretos/metabolismo , Túbulos Renais Distais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Animais , Hipertensão/metabolismo , Túbulos Renais Coletores/metabolismo , Lisina/metabolismo , Camundongos Knockout , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo
14.
J Am Soc Nephrol ; 28(6): 1814-1825, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28052988

RESUMO

The mammalian distal convoluted tubule (DCT) makes an important contribution to potassium homeostasis by modulating NaCl transport. The thiazide-sensitive Na+/Cl- cotransporter (NCC) is activated by low potassium intake and by hypokalemia. Coupled with suppression of aldosterone secretion, activation of NCC helps to retain potassium by increasing electroneutral NaCl reabsorption, therefore reducing Na+/K+ exchange. Yet the mechanisms by which DCT cells sense plasma potassium concentration and transmit the information to the apical membrane are not clear. Here, we tested the hypothesis that the potassium channel Kir4.1 is the potassium sensor of DCT cells. We generated mice in which Kir4.1 could be deleted in the kidney after the mice are fully developed. Deletion of Kir4.1 in these mice led to moderate salt wasting, low BP, and profound potassium wasting. Basolateral membranes of DCT cells were depolarized, nearly devoid of conductive potassium transport, and unresponsive to plasma potassium concentration. Although renal WNK4 abundance increased after Kir4.1 deletion, NCC abundance and function decreased, suggesting that membrane depolarization uncouples WNK kinases from NCC. Together, these results indicate that Kir4.1 mediates potassium sensing by DCT cells and couples this signal to apical transport processes.


Assuntos
Túbulos Renais Distais/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Potássio , Animais , Túbulos Renais Distais/citologia , Camundongos
16.
J Am Soc Nephrol ; 27(4): 981-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26510885

RESUMO

Hyperkalemia is common in patients with impaired kidney function or who take drugs that inhibit the renin-angiotensin-aldosterone axis. During the past decade, substantial advances in understanding how the body controls potassium excretion have been made, which may lead to improved standard of care for these patients. Renal potassium disposition is primarily handled by a short segment of the nephron, comprising part of the distal convoluted tubule and the connecting tubule, and regulation results from the interplay between aldosterone and plasma potassium. When dietary potassium intake and plasma potassium are low, the electroneutral sodium chloride cotransporter is activated, leading to salt retention. This effect limits sodium delivery to potassium secretory segments, limiting potassium losses. In contrast, when dietary potassium intake is high, aldosterone is stimulated. Simultaneously, potassium inhibits the sodium chloride cotransporter. Because more sodium is then delivered to potassium secretory segments, primed by aldosterone, kaliuresis results. When these processes are disrupted, hyperkalemia results. Recently, new agents capable of removing potassium from the body and treating hyperkalemia have been tested in clinical trials. This development suggests that more effective and safer approaches to the prevention and treatment of hyperkalemia may be on the horizon.


Assuntos
Hiperpotassemia/tratamento farmacológico , Humanos , Hiperpotassemia/etiologia , Rim/metabolismo , Potássio/metabolismo
17.
J Am Soc Nephrol ; 27(5): 1456-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26432904

RESUMO

Tacrolimus is a widely used immunosuppressive drug that inhibits the phosphatase calcineurin when bound to the 12 kDa FK506-binding protein (FKBP12). When this binding occurs in T cells, it leads to immunosuppression. Tacrolimus also causes side effects, however, such as hypertension and hyperkalemia. Previously, we reported that tacrolimus stimulates the renal thiazide-sensitive sodium chloride cotransporter (NCC), which is necessary for the development of hypertension. However, it was unclear if tacrolimus-induced hypertension resulted from tacrolimus effects in renal epithelial cells directly or in extrarenal tissues, and whether inhibition of calcineurin was required. To address these questions, we developed a mouse model in which FKBP12 could be deleted along the nephron. FKBP12 disruption alone did not cause phenotypic effects. When treated with tacrolimus, however, BP and the renal abundance of phosphorylated NCC were lower in mice lacking FKBP12 along the nephron than in control mice. Mice lacking FKBP12 along the nephron also maintained a normal relationship between plasma potassium levels and the abundance of phosphorylated NCC with tacrolimus treatment. In cultured cells, tacrolimus inhibited dephosphorylation of NCC. Together, these results suggest that tacrolimus causes hypertension predominantly by inhibiting calcineurin directly in cells expressing NCC, indicating thiazide diuretics may be particularly effective for lowering BP in tacrolimus-treated patients with hypertension.


Assuntos
Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Imunossupressores/efeitos adversos , Proteína 1A de Ligação a Tacrolimo/fisiologia , Tacrolimo/efeitos adversos , Animais , Deleção de Genes , Rim , Masculino , Camundongos , Proteína 1A de Ligação a Tacrolimo/genética
18.
J Am Soc Nephrol ; 27(8): 2436-45, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26712527

RESUMO

Excess aldosterone is an important contributor to hypertension and cardiovascular disease. Conversely, low circulating aldosterone causes salt wasting and hypotension. Aldosterone activates mineralocorticoid receptors (MRs) to increase epithelial sodium channel (ENaC) activity. However, aldosterone may also stimulate the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC). Here, we generated mice in which MRs could be deleted along the nephron to test this hypothesis. These kidney-specific MR-knockout mice exhibited salt wasting, low BP, and hyperkalemia. Notably, we found evidence of deficient apical orientation and cleavage of ENaC, despite the salt wasting. Although these mice also exhibited deficient NCC activity, NCC could be stimulated by restricting dietary potassium, which also returned BP to control levels. Together, these results indicate that MRs regulate ENaC directly, but modulation of NCC is mediated by secondary changes in plasma potassium concentration. Electrolyte balance and BP seem to be determined, therefore, by a delicate interplay between direct and indirect mineralocorticoid actions in the distal nephron.


Assuntos
Túbulos Renais Distais/metabolismo , Receptores de Mineralocorticoides/fisiologia , Cloreto de Sódio na Dieta/metabolismo , Animais , Transporte Biológico , Camundongos , Camundongos Knockout
19.
J Physiol ; 594(17): 4945-66, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27068441

RESUMO

KEY POINTS: STE20 (Sterile 20)/SPS-1 related proline/alanine-rich kinase (SPAK) and oxidative stress-response kinase-1 (OSR1) phosphorylate and activate the renal Na(+) -K(+) -2Cl(-) cotransporter 2 (NKCC2) and Na(+) Cl(-) cotransporter (NCC). Mouse models suggest that OSR1 mainly activates NKCC2-mediated sodium transport along the thick ascending limb, while SPAK mainly activates NCC along the distal convoluted tubule, but the kinases may compensate for each other. We hypothesized that disruption of both kinases would lead to polyuria and severe salt-wasting, and generated SPAK/OSR1 double knockout mice to test this. Despite a lack of SPAK and OSR1, phosphorylated NKCC2 abundance was still high, suggesting the existence of an alternative activating kinase. Compensatory changes in SPAK/OSR1-independent phosphorylation sites on both NKCC2 and NCC and changes in sodium transport along the collecting duct were also observed. Potassium restriction revealed that SPAK and OSR1 play essential roles in the emerging model that NCC activation is central to sensing changes in plasma [K(+) ]. ABSTRACT: STE20 (Sterile 20)/SPS-1 related proline/alanine-rich kinase (SPAK) and oxidative stress-response kinase-1 (OSR1) activate the renal cation cotransporters Na(+) -K(+) -2Cl(-) cotransporter (NKCC2) and Na(+) -Cl(-) cotransporter (NCC) via phosphorylation. Knockout mouse models suggest that OSR1 mainly activates NKCC2, while SPAK mainly activates NCC, with possible cross-compensation. We tested the hypothesis that disrupting both kinases causes severe polyuria and salt-wasting by generating SPAK/OSR1 double knockout (DKO) mice. DKO mice displayed lower systolic blood pressure compared with SPAK knockout (SPAK-KO) mice, but displayed no severe phenotype even after dietary salt restriction. Phosphorylation of NKCC2 at SPAK/OSR1-dependent sites was lower than in SPAK-KO mice, but still significantly greater than in wild type mice. In the renal medulla, there was significant phosphorylation of NKCC2 at SPAK/OSR1-dependent sites despite a complete absence of SPAK and OSR1, suggesting the existence of an alternative activating kinase. The distal convoluted tubule has been proposed to sense plasma [K(+) ], with NCC activation serving as the primary effector pathway that modulates K(+) secretion, by metering sodium delivery to the collecting duct. Abundance of phosphorylated NCC (pNCC) is dramatically lower in SPAK-KO mice than in wild type mice, and the additional disruption of OSR1 further reduced pNCC. SPAK-KO and kidney-specific OSR1 single knockout mice maintained plasma [K(+) ] following dietary potassium restriction, but DKO mice developed severe hypokalaemia. Unlike mice lacking SPAK or OSR1 alone, DKO mice displayed an inability to phosphorylate NCC under these conditions. These data suggest that SPAK and OSR1 are essential components of the effector pathway that maintains plasma [K(+) ].


Assuntos
Túbulos Renais Distais/metabolismo , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Pressão Sanguínea , Homeostase , Túbulos Renais Distais/fisiologia , Masculino , Camundongos , Camundongos Knockout , Potássio/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
20.
Kidney Int ; 89(1): 127-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26422504

RESUMO

Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low-potassium diet. Recent data suggest that plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the with-no-lysine kinase (WNK)-Ste20p-related proline- and alanine-rich kinase (SPAK) pathway. As previous studies used extreme dietary manipulations, we sought to determine whether the relationship between potassium and NaCl cotransporter (NCC) is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect NCC in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride concentration. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3, and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable it to mediate effects of potassium on NCC in vivo.


Assuntos
Cloretos/metabolismo , Homeostase , Potássio/sangue , Proteínas Serina-Treonina Quinases/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Túbulos Renais Distais/citologia , Túbulos Renais Distais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mutação , Néfrons/fisiologia , Fosforilação/genética , Potássio/metabolismo , Potássio na Dieta/administração & dosagem , Proteínas Serina-Treonina Quinases/genética , Proteína Quinase 1 Deficiente de Lisina WNK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA