RESUMO
Red seaweed carrageenans are frequently used in industry for its texturizing properties and have demonstrated antiviral activities that can be used in human medicine. However, their high viscosity, high molecular weight, and low skin penetration limit their use. Low-weight carrageenans have a reduced viscosity and molecular weight, enhancing their biological properties. In this study, ι-carrageenan from Solieria chordalis, extracted using hot water and dialyzed, was depolymerized using hydrogen peroxide and ultrasound. Ultrasonic depolymerization yielded fractions of average molecular weight (50 kDa) that were rich in sulfate groups (16% and 33%) compared to those from the hydrogen peroxide treatment (7 kDa, 6% and 9%). The potential bioactivity of the polysaccharides and low-molecular-weight (LMW) fractions were assessed using WST-1 and LDH assays for human fibroblast viability, proliferation, and cytotoxicity. The depolymerized fractions did not affect cell proliferation and were not cytotoxic. This research highlights the diversity in the biochemical composition and lack of cytotoxicity of Solieria chordalis polysaccharides and LMW fractions produced by a green (ultrasound) depolymerization method.
Assuntos
Carragenina , Peso Molecular , Rodófitas , Humanos , Rodófitas/química , Carragenina/farmacologia , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Polimerização , Ondas Ultrassônicas , ViscosidadeRESUMO
Polysaccharides, lipids and amino acid profiles were investigated to understand the nutritional value of Caulerpa racemosa and Ulva fasciata from the Philippines. The results revealed that both species contain high amounts of proteins (8.8-19.9% for C. racemosa and 8.0-11.1% for U. fasciata). The portions of the total amino acids that were essential amino acids (EAAs) (45.28 ± 0.12% for C. racemosa and 42.17 ± 0.12% for U. fasciata) out were comparable to FAO/WHO requirements. Leucine, valine, isoleucine, and lysine are the dominant EAAs in C. racemosa, while leucine, valine, lysine, and phenylalanine are those in U. fasciata. The fatty acid profiles are dominated by monounsaturated fatty acids and polyunsaturated fatty acids in C. racemosa (56.2%), while saturated fatty acids (72.1%) are dominant in U. fasciata. High C18/C20 polyunsaturated fatty acid ratios were recorded in both species. Mineral contents for both seaweeds were within levels considered safe for functional foods. Total pigment content of C. racemosa (140.84 mg/g dw) was almost 20 times higher than that of U. fasciata (7.54 mg/g dw). Hot water extract (HWE) from C. racemosa showed in vitro antiherpetic activity without cytotoxicity. Nutritional characteristics confirmed that C. racemosa could be potentially used as a nutritious and functional food items for human consumption.
Assuntos
Caulerpa/química , Monossacarídeos , Valor Nutritivo , Alga Marinha/química , Ulva/química , Aminoácidos/análise , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Antivirais/química , Antivirais/farmacologia , Parede Celular/química , Chlorocebus aethiops , Ácidos Graxos/análise , Ácidos Graxos/química , Minerais/análise , Monossacarídeos/análise , Filipinas , Pigmentos Biológicos/análise , Polissacarídeos/análise , Polissacarídeos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Células VeroRESUMO
Data on fractionation and depolymerization of the matrix ulvan polysaccharides, and studies on the biological activities on skin cells, are very scarce. In this work, crude ulvans were produced by using EAE (enzyme-assisted extraction) and compared to maceration (an established procedure). After different fractionation procedures-ethanolic precipitation, dialysis, or ammonium sulfate precipitation-the biochemical composition showed that EAE led to an increased content in ulvans. Coupling EAE to sulfate ammonium precipitation led to protein enrichment. Oligosaccharides were obtained by using radical depolymerization by H2O2 and ion-exchange resin depolymerization. Sulfate groups were partially cleaved during these chemical treatments. The potential bioactivity of the fractions was assessed using a lipoxygenase inhibition assay for anti-inflammatory activity and a WST-1 assay for human dermal fibroblast viability and proliferation. All ulvans extracts, poly- and oligosaccharidic fractions from EAE, expanded the fibroblast proliferation rate up to 62%. Our research emphasizes the potential use of poly- and oligosaccharidic fractions of Ulva sp. for further development in cosmetic applications.
RESUMO
This article describes the design and the synthesis of two analogues of archaeal bipolar lipids that differ only by the configuration of a single stereogenic centre on a glyceryl moiety. The corresponding comparative physicochemical study by tensiometry/ellipsometry and atomic force microscopy provided a set of data that points out the effect of this single stereochemical variation. The two epimers revealed different conformations at the air/water interface resulting in a more or less tendency for a bent or a stretched conformation. It strengthens the importance of the stereochemistry in such bipolar lipid packing.
Assuntos
Ar , Modelos Químicos , Tensoativos/química , Água/química , Conformação Molecular , Esteroide 12-alfa-Hidroxilase , Propriedades de SuperfícieRESUMO
This article describes a comparative study of several bipolar lipids derived from tetraether structures. The sole structural difference between the main two glycolipids is a unique stereochemical variation on a cyclopentyl ring placed in the middle of the lipids. We discuss the comparative results obtained at the air/water interface on the basis of tensiometry and ellipsometry. Langmuir-Blodgett depositions during lipid film compressions and decompressions were also analyzed by AFM. The lactosylated tetraether (bipolar) lipid structures involved the formation of highly stable multilayers, which are still present at 10 mN m(-1) during decompression. This study suggests also that the stereochemistry of a central cyclopentyl ring dramatically drives the conformation of the corresponding bipolar lipids. Both isomers (trans and cis) adopt a U-shaped (bent) conformation at the air/water interface but the trans cyclopentyl ring induces a much more frustration within this type of conformation. Consequently, this bipolar lipid (trans-tetraether) undergoes a flip of one polar head-group (lactosyl) leading to a stretched conformation during collapse.