RESUMO
Sterols are essential components of the yeast membrane and their synthesis requires oxygen. Yet, Saccharomyces cerevisiae has developed the ability to take up sterols from the medium under anaerobiosis. Here we investigated sterol uptake efficiency and the expression of genes related to sterol import in Saccharomyces and non-Saccharomyces wine yeast species fermenting under anaerobic conditions. The sterol uptake efficiency of 39 strains was evaluated by flow cytometry (with 25-NBD Cholesterol, a fluorescent cholesterol probe introduced in the medium) and we found an important discrepancy between Saccharomyces and non-Saccharomyces wine yeast species that we correlated to a lower final cell population and a lower fermentation rate. A high uptake of sterol was observed in the various Saccharomyces strains. Spot tests performed on 13 of these strains confirmed the differences between Saccharomyces and non-Saccharomyces strains, suggesting that the presence of the sterol uptake transporters AUS1 and PDR11 could cause these discrepancies. Indeed, we could not find any homologue to these genes in the genome of Hanseniaspora uvarum, H. guillermondii, Lachancea thermotolerans, Torulaspora delbreueckii, Metschnikowia pulcherrima, or Starmarella bacillaris species. The specialization of sterol import function for post genome-duplication species may have favored growth under anaerobiosis.
Assuntos
Fermentação , Saccharomyces/genética , Saccharomyces/metabolismo , Esteróis/metabolismo , Vinho/análise , Leveduras/genética , Leveduras/metabolismo , Anaerobiose , Transporte Biológico/genética , Filogenia , Saccharomyces/classificação , Esteróis/análise , Leveduras/classificaçãoRESUMO
This review summarizes the current knowledge on the importance and role of lipids in wine yeast fermentation. Lipids play an important role in membrane structure, adaptation to stress, or as signaling molecules. They are also essential nutrients whose availability can vary depending on winemaking technology, with major effects on yeast alcoholic fermentation. Moreover, lipid supplementation can greatly stimulate the formation of yeast volatile metabolites.
Assuntos
Fermentação , Metabolismo dos Lipídeos , Vinho/microbiologia , Leveduras/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Leveduras/crescimento & desenvolvimentoRESUMO
Nitrogen is an important nutrient in alcoholic fermentation because its starvation affects both fermentation kinetics and the formation of yeast metabolites. In most alcoholic fermentations, yeasts have to ferment in nitrogen-starved conditions, which requires modifications of cell functions to maintain a high sugar flux and enable cell survival for long periods in stressful conditions. In this review, we present an overview of our current understanding of the responses of the wine yeast Saccharomyces cerevisiae to variations of nitrogen availability. Adaptation to nitrogen starvation involves changes in the activity of signaling pathways such as target of rapamycin (TOR) and nitrogen catabolite repression (NCR), which are important for the remodeling of gene expression and the establishment of stress responses. Upon starvation, protein degradation pathways involving autophagy and the proteasome play a major role in nitrogen recycling and the adjustment of cellular activity. Recent progress in the understanding of the role of these mechanisms should enable advances in fermentation management and the design of novel targets for the selection or improvement of yeast strains.
Assuntos
Álcoois/metabolismo , Fermentação , Nitrogênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologiaRESUMO
Nitrogen is an essential nutrient for Saccharomyces cerevisiae wine yeasts during alcoholic fermentation, and its abundance determines the fermentation rate and duration. The capacity to ferment under conditions of nitrogen deficiency differs between yeasts. A characterization of the nitrogen requirements of a set of 23 strains revealed large differences in their fermentative performances under nitrogen deficiency, and these differences reflect the nitrogen requirements of the strains. We selected and compared two groups of strains, one with low nitrogen requirements (LNRs) and the other with high nitrogen requirements (HNRs). A comparison of various physiological traits indicated that the differences are not related to the ability to store nitrogen or the protein content. No differences in protein synthesis activity were detected between strains with different nitrogen requirements. Transcriptomic analysis revealed expression patterns specific to each of the two groups of strains, with an overexpression of stress genes in HNR strains and a stronger expression of biosynthetic genes in LNR strains. Our data suggest that differences in glycolytic flux may originate from variations in nitrogen sensing and signaling under conditions of starvation.
Assuntos
Etanol/metabolismo , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Fermentação , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genéticaRESUMO
Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of cell membrane integrity and its good functionality. During alcoholic fermentation, they enhance yeast growth, metabolism and viability, as well as resistance to high sugar content and ethanol stress. Grape musts clarified in excess lead to the loss of solid particles rich in sterols, resulting in sluggish and stuck fermentations. Two sterol sources can help Saccharomyces cerevisiae yeasts to adapt to fermentation stress conditions: ergosterol (synthesized by yeast under aerobic conditions) and phytosterols (plant sterols imported by yeast cells from grape musts under anaerobiosis). Little is known about the physiological impact of phytosterols assimilation in comparison with ergosterol and the influence of sterol type on fermentation kinetics parameters. Moreover, studies to date have analyzed a limited number of yeast strains. Thus, the aim of this work was to compare the performances of a set of Saccharomyces cerevisiae wine strains that represent the diversity of industrial wine yeast, fermenting with phytosterols or ergosterol under two conditions: sterol limitation (sterol starvation) and high sugar content (the most common stress during fermentation). Results indicated that yeast cell viability was negatively impacted by both stressful conditions, resulting in sluggish and stuck fermentations. This study revealed the huge phenotype diversity of the S. cerevisiae strains tested, in particular in terms of cell viability. Indeed, strains with better viability maintenance completed fermentation earlier. Interestingly, we showed for the first time that sterol type differently affects a wide variety of phenotype, such as viability, biomass, fermentation kinetics parameters and biosynthesis of carbon central metabolism (CCM) metabolites. Ergosterol allowed preserving more viable cells at the end of fermentation and, as a consequence, a better completion of fermentation in both conditions tested, even if phytosterols also enabled the completion of alcoholic fermentation for almost all strains. These results highlighted the essential role of sterols during wine alcoholic fermentation to ensure yeast growth and avoid sluggish or stuck fermentations. Finally, this study emphasizes the importance of taking into account sterol types available during wine fermentation.
RESUMO
[This corrects the article DOI: 10.1371/journal.pone.0233285.].
RESUMO
To understand how grapevine Rop and Rab proteins achieve their functional versatility in signalling, identification of the putative VvRop- and VvRab-interacting proteins was performed using newly designed tools. In this study, sequences encoding eight full-length proteins for VvRop GTPase-activating proteins (GAPs), five for VvRabGAPs, six for VvRop guanine nucleotide exchange factors (GEFs), one for VvRabGEF, five for VvRop GDP dissociation inhibitors (GDIs), and three for VvRabGDIs were identified. These proteins had a CRIB motif or PH domain, a TBC domain, a PRONE domain, a DENN domain, or GDI signatures, respectively. By bootstrap analysis, an unrooted consensus phylogenetic tree was constructed which indicated that VvRopGDIs and VvRopGEFs--but not VvRopGAP--belonged to the same clade, and that VvRabGEF1 protein was more closely related to VvRopGAPs than to the other putative VvRab-interacting proteins. Twenty-two genes out of 28 encoding putative VvRop- and VvRab-interacting proteins could be located on identified grapevine chromosomes. Generally one gene was anchored on one chromosome, but in some cases up to four genes were located on the same chromosome. Expression patterns of the genes encoding putative VvRop- and VvRab-interacting proteins were also examined using a newly developed tool based on public expressed sequence tag (EST) database analysis. Expression patterns were sometimes found to be specific to an organ or a developmental stage. Although some limitations exist, the use of EST database analysis is stressed, in particular in the case of species where expression data are obtained at high costs in terms of time and effort.
Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Genoma de Planta/genética , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Vitis/genética , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
Fermentation by microorganisms is a key step in the production of traditional food products such as bread, cheese, beer and wine. In these fermentative ecosystems, microorganisms interact in various ways, namely competition, predation, commensalism and mutualism. Traditional wine fermentation is a complex microbial process performed by Saccharomyces and non-Saccharomyces (NS) yeast species. To better understand the different interactions occurring within wine fermentation, isolated yeast cultures were compared with mixed co-cultures of one reference strain of S. cerevisiae with one strain of four NS yeast species (Metschnikowia pulcherrima, M. fructicola, Hanseniaspora opuntiae and H. uvarum). In each case, we studied population dynamics, resource consumed and metabolites produced from central carbon metabolism. This phenotyping of competition kinetics allowed us to confirm the main mechanisms of interaction between strains of four NS species. S. cerevisiae competed with H. uvarum and H. opuntiae for resources although both Hanseniaspora species were characterized by a strong mortality either in mono or mixed fermentations. M. pulcherrima and M. fructicola displayed a negative interaction with the S. cerevisiae strain tested, with a decrease in viability in co-culture. Overall, this work highlights the importance of measuring specific cell populations in mixed cultures and their metabolite kinetics to understand yeast-yeast interactions. These results are a first step towards ecological engineering and the rational design of optimal multi-species starter consortia using modeling tools. In particular the originality of this paper is for the first times to highlight the joint-effect of different species population dynamics on glycerol production and also to discuss on the putative role of lipid uptake on the limitation of some non-conventional species growth although interaction processes.
Assuntos
Fermentação , Hanseniaspora/metabolismo , Metschnikowia/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Dióxido de Carbono/metabolismo , Fermentação/fisiologia , Frutose/metabolismo , Sucos de Frutas e Vegetais/microbiologia , Glucose/metabolismo , Cinética , Nitrogênio/metabolismo , VitisRESUMO
Nitrogen composition of the grape must has an impact on yeast growth and fermentation kinetics as well as on the organoleptic properties of the final product. In some technological processes, such as white wine/rosé winemaking, the yeast-assimilable nitrogen content is sometimes insufficient to cover yeast requirements, which can lead to slow or sluggish fermentations. Growth is nevertheless quickly restored upon relief from nutrient starvation, e.g. through the addition of ammonium nitrogen, allowing fermentation completion. The aim of this study was to determine how nitrogen repletion affected the transcriptional response of a Saccharomyces cerevisiae wine yeast strain, in particular within the first hour after nitrogen addition. We found almost 4800 genes induced or repressed, sometimes within minutes after nutrient changes. Some of these responses to nitrogen depended on the TOR pathway, which controls positively ribosomal protein genes, amino acid and purine biosynthesis or amino acid permease genes and negatively stress-response genes, and genes related to the retrograde response (RTG) specific to the tricarboxylic acid (TCA) cycle and nitrogen catabolite repression (NCR). Some unexpected transcriptional responses concerned all the glycolytic genes, carbohydrate metabolism and TCA cycle-related genes that were down-regulated, as well as genes from the lipid metabolism.
Assuntos
Regulação para Baixo/genética , Regulação Fúngica da Expressão Gênica , Glicólise/genética , Metabolismo dos Lipídeos/genética , Nitrogênio/deficiência , Saccharomyces cerevisiae/genética , Fermentação/genética , Cinética , Regulação para Cima/genéticaRESUMO
As a first step to investigate whether Rab GTPases are involved in grape berry development, the Vitis vinifera EST and gene databases were searched for members of the VvRab family. The grapevine genome was found to contain 26 VvRabs that could be distributed into all of the eight groups described in the literature for model plants. Genetic mapping was successfully performed; VvRabs were mostly located on independent chromosomes, apart from eight that were located on the as yet unassigned portions of the genome clustered in the ChrUn Random chromosome. Conserved and divergent regions between VvRab protein sequences were identified. Transcript expression of 11 VvRabs was analysed by real-time quantitative RT-PCR. Except for VvRabA5b, transcript expression was detected, in general, in all the organs investigated, but with different patterns. In grape berries, VvRab transcripts were expressed at all stages of fruit development, with different profiles, except in the case of members of the A family which displayed generally similar patterns. The response to growth regulators in cell cultures was generally specific to each VvRab, with a differential pattern of expression for ethylene, auxin, and abscisic acid according to the VvRab. Interestingly, and unexpectedly considering transcript expression, western blotting using a monoclonal antibody raised against AtRabA5c (ARA4) showed a specific expression in the exocarp of ripe grape berries, in all seven red and white berry varieties tested. By contrast, no expression was detected in any of the other organs or tissues investigated. This paper contains the first description of Rab GTPases in V. vinifera. The involvement of a specific VvRab in grape berry late development and the potential role of this Rab GTPase are discussed in relation to literature data.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Estruturas Vegetais/enzimologia , Vitis/enzimologia , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Sequência de Aminoácidos , Arabidopsis/classificação , Arabidopsis/genética , Células Cultivadas , Mapeamento Cromossômico , Sequência Conservada , DNA Complementar/genética , Expressão Gênica , Genoma de Planta , Dados de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estruturas Vegetais/classificação , Estruturas Vegetais/genética , Alinhamento de Sequência , Vitis/classificação , Vitis/genética , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
During winemaking Saccharomyces cerevisiae strains are exposed continuously to environmental changes and this microorganism responds modifying its transcriptional profile. Yeast flocculation is considered a social trait that allows the cells to escape from hostile conditions by sedimentation. This behaviour is based on the self-interaction of flocculins, proteins encoded by FLO family genes. These are considered responsible of the facultative-helping type cooperation and were designed as green-beard genes. In order to understand the role of flocculation to stress response, the genome wide expression analysis of a wine flocculent S. cerevisiae F6789A strain and its FLO5 deleted strain (F6789A-Δflo5) were determined, using DNA microarray technology. Results highlighted that F6789A strain showed a shorter lag phase in winemaking condition. The comparison of transcriptomic profiles underlined that, while F6789A-Δflo5 strain seemed engaged in the re-organization of the cell wall and in finding different adhesion ways, F6789A strain presented an up-regulation of genes involved in stress response and higher alcohol production.
Assuntos
Lectinas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcriptoma , Vinho/microbiologia , Fermentação , Floculação , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Cinética , Lectinas/genética , Lectinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma/genética , Transcriptoma/fisiologiaRESUMO
Nitrogen replenishment of nitrogen-starved yeast cells resulted in substantial transcriptome changes. There was an unexplained rapid, transient down-regulation of glycolytic genes. This unexpected result prompted us to search for the factors controlling these changes, among which is the possible involvement of different nutrient-sensing pathways such as the TORC1 and cAMP/PKA pathways. To that end, the effects of various gene deletions or chemical blocking agents were tested by investigating the expression of PGK1, one of the glycolytic genes most affected after nitrogen replenishment. We report here that several factors affected glycolytic mRNA stability, among which were glucose sensing, protein elongation, nitrogen metabolism, and TOR signaling. Ammonium sensing was not involved in the response, but ammonium metabolism was required. Thus, our results suggest that, in the presence of glucose, carbon/nitrogen cross-talk is likely involved in the response to nitrogen upshift. Our data suggest that posttranscriptional control of glycolytic gene expression may be an important response to nitrogen replenishment.
Assuntos
Glucose/metabolismo , Nitrogênio/metabolismo , Estabilidade de RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , AMP Cíclico/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Glicólise , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , TranscriptomaRESUMO
A proteomic approach has been used to study changes in leaf protein content from plants transformed for alcohol dehydrogenase (ADH) activity. Individual quantitative analysis of 190-436 spots separated by two-dimensional electrophoresis was performed, and spots displaying significant quantitative changes between control (C), sense (S), and antisense (R) transformants were selected using Student's t test. Of the 14 spots selected and further analyzed after trypsic digestion, 9 could be identified by MS analysis and 5 by LC-MS/MS. Identified proteins had mainly a chloroplastic origin: four rubisco large subunits, one rubisco binding protein, two glutamine synthetases, one elongation factor Tu, one ATP synthase beta subunit, and one plastidic aldolase. Proteins with other localization were also identified, such as a UDP-glucose pyrophosphorylase, a mitochondrial aminomethyltransferase, a linalool synthase, which comigrated with the protein identified as elongation factor Tu, an enolase comigrating with a glyceraldehyde 3-phosphate dehydrogenase, and a mixture of eight proteins among which were a dehydroascorbate reductase, a chalcone isomerase, and a rubisco activase. The results emphasize the changes in carbon metabolism-associated proteins linked to the alteration in ADH activity of grapevine transformant leaves.
Assuntos
Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Folhas de Planta/química , Proteínas de Plantas/análise , Plantas Geneticamente Modificadas/enzimologia , Vitis/enzimologia , Espectrometria de Massas , Plantas Geneticamente Modificadas/química , Vitis/química , Vitis/genéticaRESUMO
Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.
Assuntos
Fermentação/fisiologia , Nitrogênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Transcriptoma/fisiologia , Vinho , Deleção de Genes , Glicogênio/genética , Glicogênio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Flocculation is an important feature for yeast survival in adverse conditions. The natural diversity of flocculating genes in Saccharomyces cerevisiae can also be exploited in several biotechnological applications. Flocculation is mainly regulated by the expression of genes belonging to the FLO family. These genes have a similar function, but their specific contribution to flocculation ability is still unclear. In this study, the distribution of FLO1, FLO5 and FLO8 genes in four S. cerevisiae wine strains was investigated. Subsequently, both FLO1 and FLO5 genes were separately deleted in a flocculent S. cerevisiae wine strain. After gene disruption, flocculation ability and agar adhesion were evaluated. FLO1 and FLO5 genes inheritance was also monitored. All strains presented different lengths for FLO1 and FLO5 genes. Results confirm that in S. cerevisiae strain F6789, the FLO5 gene drives flocculation and influences adhesive properties. Flocculation ability monitoring after a cross with a non-flocculent strain revealed that FLO5 is the gene responsible for flocculation development.
Assuntos
Floculação , Regulação Fúngica da Expressão Gênica , Lectinas/genética , Lectinas/metabolismo , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Vinho/microbiologia , Sequência de Aminoácidos , Deleção de GenesRESUMO
Extensively developed for medical and clinical applications, flow cytometry is now being used for diverse applications in food microbiology. Most uses of flow cytometry for yeast cells are derived from methods for mammalian cells, but yeast cells can present specificities that must be taken into account for rigorous analysis of the data output to avoid any misinterpretation. We report an analysis of Saccharomyces cerevisiae cell cycle progression that highlights possible errors. The cell cycle was analyzed using an intercalating fluorochrome to assess cell DNA content. In analyses of yeast cultures, the presence of a sub-G1 peak in the fluorescent signal is often interpreted as a loss of DNA due to its fragmentation associated with apoptosis. However, the cell wall and its stucture may interfere with the fluorescent signal recorded. These observations indicate that misinterpretation of yeast DNA profiles is possible in analyses based on some of the most common probes: cells in G0 appeared to have a lower DNA content and may have been mistaken as a sub-G1 population. However, careful selection of the fluorochrome for DNA quantification allowed a direct discrimination between G0 and G1 yeast cell cycle steps, without additional labeling. We present and discuss results obtained with five current fluorochromes. These observations led us to recommend to use SYTOX Green for cycle analysis of living cells and SYBR Green I for the identification of the apoptosis sub-G1 population identification or the DNA ploidy application.
Assuntos
Ciclo Celular/fisiologia , Citometria de Fluxo/métodos , Saccharomyces cerevisiae/fisiologia , DNA/metabolismo , Fase G1 , Fase de Repouso do Ciclo Celular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Coloração e RotulagemRESUMO
We evaluated the consequences of nutritional imbalances, particularly lipid/nitrogen imbalances, on wine yeast survival during alcoholic fermentation. We report that lipid limitation (ergosterol limitation in our model) led to a rapid loss of viability during the stationary phase of fermentation and that the cell death rate is strongly modulated by nitrogen availability and nature. Yeast survival was reduced in the presence of excess nitrogen in lipid-limited fermentations. The rapidly dying yeast cells in fermentations in high nitrogen and lipid-limited conditions displayed a lower storage of the carbohydrates trehalose and glycogen than observed in nitrogen-limited cells. We studied the cell stress response using HSP12 promoter-driven GFP expression as a marker, and found that lipid limitation triggered a weaker stress response than nitrogen limitation. We used a SCH9-deleted strain to assess the involvement of nitrogen signalling pathways in the triggering of cell death. Deletion of SCH9 increased yeast viability in the presence of excess nitrogen, indicating that a signalling pathway acting through Sch9p is involved in this nitrogen-triggered cell death. We also show that various nitrogen sources, but not histidine or proline, provoked cell death. Our various findings indicate that lipid limitation does not elicit a transcriptional programme that leads to a stress response protecting yeast cells and that nitrogen excess triggers cell death by modulating this stress response, but not through HSP12. These results reveal a possibly negative role of nitrogen in fermentation, with reported effects referring to ergosterol limitation conditions. These effects should be taken into account in the management of alcoholic fermentations.
Assuntos
Ergosterol/metabolismo , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Morte Celular/genética , Etanol/metabolismo , Fermentação , Genes Reporter , Glicogênio/metabolismo , Proteínas de Fluorescência Verde , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Trealose/metabolismoRESUMO
Rop/Rac GTPases are plant-specific signalling proteins with multiple roles, some of which have implications in plant development and in hormone signal transduction. Using expressed sequence tag (EST) and gene database analyses, members of the Rop family were characterized for the first time in a perennial species (Vitis vinifera). The grapevine genome was found to contain seven expressed VvRops. The phylogenetic analyses indicated that VvRops could be distributed into four groups, as described in the literature for model plants. Genetic mapping was successfully performed for five VvRops, which were localized on independent linkage groups. Conserved and divergent regions were identified on the protein sequences. The results of VvRop expression obtained by real-time quantitative reverse transcription-PCR analyses indicated that all the organs investigated displayed VvRop expression, however with different patterns. Whereas no total organ specificity for VvRop expression could be evidenced, VvRop9 displayed high expression in developing berries only. During berry development, the transcript profile was generally similar for all the VvRops, i.e. displaying a peak early in the herbaceous phase followed by a decline towards veraison and thereafter. Western blotting gave a similar expression profile for VvRop proteins. Response to growth regulators was generally specific to each VvRop. The potential involvement of specific VvRops in grapevine development is discussed.
Assuntos
GTP Fosfo-Hidrolases/fisiologia , Proteínas de Plantas/fisiologia , Vitis/enzimologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Clonagem Molecular , Etiquetas de Sequências Expressas , Frutas/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Ligação Genética , Genoma de Planta , Dados de Sequência Molecular , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Vitis/genética , Vitis/crescimento & desenvolvimentoRESUMO
The functional role of Adh in regulating susceptibility to abiotic stress and the synthesis of secondary metabolites was investigated in transgenic grapevine plants over- and underexpressing alcohol dehydrogenase (Adh). Plants were transformed with gene constructs containing a sense or antisense orientated grapevine VvAdh2 cDNA under the constitutive cauliflower mosaic virus 35S promoter. Plants transformed with either antisense orientation or the Adh-less construct displayed a low but detectable constitutive ADH activity, whereas plants transformed with the sense-expressed transgene showed a significantly higher (100-fold) ADH activity than the control. Compared with the control, the sense transgene induced an overexpression of VvAdh2 transcripts, whereas a reduced VvAdh2 expression was detected in antisense transformants. Grapevine plants overexpressing Adh displayed a lower sucrose content, a higher degree of polymerization of proanthocyanidins, and a generally increased content of volatile compounds, mainly in carotenoid- and shikimate-derived volatiles. In general, no significant differences between sense/antisense transformants were observed with regard to carotenoid and chlorophyll contents, suggesting a strong metabolic regulation of the synthesis of these compounds.
Assuntos
Álcool Desidrogenase/metabolismo , Folhas de Planta/enzimologia , Vitis/enzimologia , Álcool Desidrogenase/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Ácidos Cumáricos/metabolismo , Flavonóis/metabolismo , Hexoses/metabolismo , Norisoprenoides/metabolismo , Plantas Geneticamente Modificadas , Proantocianidinas/metabolismo , Terpenos/metabolismo , Transformação Genética , Vitis/genéticaRESUMO
Although grape berries have been classified as non-climacteric fruits, ongoing studies on grape ethylene signalling challenge the role of ethylene in their ripening. One of the significant molecular changes in berries is the up-regulation of ADH (alcohol dehydrogenase, EC 1.1.1.1) enzyme activity at the inception of fruit ripening and of VvADH2 transcript levels. This paper shows that the ethylene signal transduction pathway could be involved in the control of VvADH2 expression in grapevine berries and in cell suspensions. The induction of VvADH2 transcription, either in berries at the inception of ripening or in cell suspensions, was found to be partly inhibited by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene receptors. Treatment of cell suspensions with 2-chloroethylphosphonic acid (2-CEPA), an ethylene-releasing compound, also resulted in a significant increase in ADH activity and VvADH2 transcription under anaerobiosis, showing that concomitant ethylene and anaerobic treatments in cell suspensions could result in changes in VvADH2 expression. All these results associated with the presence in the VvADH2 promoter of regulatory elements for ethylene and anaerobic response, suggest that the ethylene transduction pathway and anaerobic stress could be, in part, involved in the regulation of VvADH2 expression in ripening berries and cell suspensions. These data open new aspects of the expression control of a ripening-related gene in a non-climacteric fruit.