Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Am Chem Soc ; 145(3): 1518-1523, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626573

RESUMO

Differentiation of enantiomers represents an important research area for pharmaceutical, chemical, and food industries. However, enantiomer separation is a laborious task that demands complex analytical techniques, specialized equipment, and expert personnel. In this respect, discrimination and quantification of d- and l-α-amino acids is no exception, generally requiring extensive sample manipulation, including isolation, functionalization, and chiral separation. This complex sample treatment results in high time costs and potential biases in the quantitative determination. Here, we present an approach based on the combination of non-hydrogenative parahydrogen-induced hyperpolarization and nuclear magnetic resonance that allows detection, discrimination, and quantification of d- and l-α-amino acids in complex mixtures such as biofluids and food extracts down to submicromolar concentrations. Importantly, this method can be directly applied to the system under investigation without any prior isolation, fractionation, or functionalization step.


Assuntos
Aminoácidos , Imageamento por Ressonância Magnética , Aminoácidos/química , Espectroscopia de Ressonância Magnética/métodos , Estereoisomerismo
2.
Acc Chem Res ; 55(13): 1832-1844, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35709417

RESUMO

Nuclear magnetic resonance (NMR) is a powerful technique for chemical analysis. The use of NMR to investigate dilute analytes in complex systems is, however, hampered by its relatively low sensitivity. An additional obstacle is represented by the NMR signal overlap. Because solutes in a complex mixture are usually not isotopically labeled, NMR studies are often limited to 1H measurements, which, because of the modest dispersion of the 1H resonances (typically ∼10 ppm), can result in challenging signal crowding. The low NMR sensitivity issue can be alleviated by nuclear spin hyperpolarization (i.e., transiently increasing the differences in nuclear spin populations), which determines large NMR signal enhancements. This has been demonstrated for hyperpolarization methods such as dynamic nuclear polarization, spin-exchange optical pumping and para-hydrogen-induced polarization (PHIP). In particular, PHIP has grown into a fast, efficient, and versatile technique since the recent discovery of non-hydrogenative routes to achieve nuclear spin hyperpolarization.For instance, signal amplification by reversible exchange (SABRE) can generate proton as well as heteronuclear spin hyperpolarization in a few seconds in compounds that are able to transiently bind to an iridium catalyst in the presence of para-hydrogen in solution. The hyperpolarization transfer catalyst acts as a chemosensor in the sense that it is selective for analytes that can coordinate to the metal center, such as nitrogen-containing aromatic heterocycles, sulfur heteroaromatic compounds, nitriles, Schiff bases, diaziridines, carboxylic acids, and amines. We have demonstrated that the signal enhancement achieved by SABRE allows rapid NMR detection and quantification of a mixture of substrates down to low-micromolar concentration. Furthermore, in the transient complex, the spin configuration of p-H2 can be easily converted to spin hyperpolarization to produce up to 1000-fold enhanced NMR hydride signals. Because the hydrides' chemical shifts are highly sensitive to the structure of the analyte associating with the iridium complex, they can be employed as hyperpolarized "probes" to signal the presence of specific compounds in the mixture. This indirect detection of the analytes in solution provides important benefits in the case of complex systems, as hydrides resonate in a region of the 1H spectrum (at ca. -20 ppm) that is generally signal-free. The enhanced sensitivity provided by non-hydrogenative PHIP (nhPHIP), together with the absence of interference from the complex matrix (usually resonating between 0 and 10 ppm), set the detection limit for this NMR chemosensor down to sub-µM concentrations, approximately 3 orders of magnitude lower than for conventional NMR. This nhPHIP approach represents, therefore, a powerful tool for NMR analysis of dilute substrates in complex mixtures as it addresses at once the issues of signal crowding and NMR sensitivity. Importantly, being performed at high field inside the NMR spectrometer, the method allows for rapid acquisition of multiple scans, multidimensional hyperpolarized NMR spectra, in a fashion comparable to that of standard NMR measurements.In this Account, we focus on our chemosensing NMR technology, detailing its principles, advantages, and limitations and presenting a number of applications to real systems such as biofluids, beverages, and natural extracts.


Assuntos
Hidrogênio , Irídio , Misturas Complexas , Hidrogênio/química , Irídio/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Prótons
3.
Magn Reson Chem ; 59(12): 1236-1243, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34096084

RESUMO

Recent developments in para-hydrogen-induced polarization (PHIP) methods allow the nuclear magnetic resonance (NMR) detection of specific classes of compounds, down to sub-micromolar concentration in solution. However, when dealing with complex mixtures, signal resolution requires the acquisition of 2D PHIP-NMR spectra, which often results in long experimental times. This strongly limits the applicability of these 2D PHIP-NMR techniques in areas in which high-throughput analysis is required. Here, we present a combination of fast acquisition and nonuniform sampling that can afford a 10-fold reduction in measuring time without compromising the spectral quality. This approach was tested on a mixture of substrates at micromolar concentration, for which a resolved 2D PHIP spectrum was acquired in less than 3 min.


Assuntos
Hidrogênio , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
4.
Angew Chem Int Ed Engl ; 60(52): 26954-26959, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34534406

RESUMO

The scope of non-hydrogenative parahydrogen hyperpolarization (nhPHIP) techniques has been expanding over the last years, with the continuous addition of important classes of substrates. For example, pyruvate can now be hyperpolarized using the Signal Amplification By Reversible Exchange (SABRE) technique, offering a fast, efficient and low-cost PHIP alternative to Dynamic Nuclear Polarization for metabolic imaging studies. Still, important biomolecules such as amino acids have so far resisted PHIP, unless properly functionalized. Here, we report on an approach to nhPHIP for unmodified α-amino acids that allows their detection and quantification in complex mixtures at sub-micromolar concentrations. This method was tested on human urine, in which natural α-amino acids could be measured after dilution with methanol without any additional sample treatment.


Assuntos
Aminoácidos/urina , Espectroscopia de Ressonância Magnética/métodos , Aminoácidos/química , Catálise , Complexos de Coordenação/química , Humanos , Hidrogênio/química , Irídio/química
5.
Magn Reson Chem ; 56(7): 633-640, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220098

RESUMO

Nuclear magnetic resonance (NMR) studies of complex mixtures are often limited by the low sensitivity of the technique and by spectral overlap. We have recently reported on an NMR chemosensor on the basis of para-Hydrogen Induced Polarization that potentially addresses both these issues, albeit for specific classes of compounds. This approach makes use of Signal Amplification By Reversible Exchange (SABRE) catalysts in methanol and allows selective detection and quantification of dilute analytes in complex mixtures. Herein, we demonstrate that, despite a large decrease in attained hyperpolarization, this method can be extended to water-alcohol mixtures. Our approach was tested on whisky, where nitrogenous heterocyclic flavor components at low-micromolar concentration could be detected and quantified.

6.
Angew Chem Int Ed Engl ; 56(31): 9174-9177, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28590559

RESUMO

DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes' diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low-micromolar mixtures, thus reducing the concentration requirements by at least 100-fold.

7.
Anal Chem ; 88(12): 6465-71, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27247048

RESUMO

Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Cleavage of the peptide bond following electrochemical oxidation of Tyr or Trp results in a spirolactone moiety at the newly formed C-terminus offering a handle for chemical labeling. In this work, we developed a highly efficient and selective chemical labeling approach based on spirolactone chemistry. Electrochemically generated peptide-spirolactones readily undergo an intramolecular rearrangement yielding isomeric diketopiperazines precluding further chemical labeling. A strategy was established to prevent intramolecular arrangement by acetylating the N-terminal amino group prior to electrochemical oxidation and cleavage allowing the complete and selective chemical labeling of the tripeptide LWL and the decapeptide ACTH 1-10 with amine-containing reagents. As examples, we show the successful introduction of a fluorescent label and biotin for detection or affinity enrichment. Electrochemical digestion of peptides and proteins followed by efficient chemical labeling constitutes a new, powerful tool in protein chemistry and protein analysis.


Assuntos
Técnicas Eletroquímicas , Corantes Fluorescentes/química , Peptídeos/química , Espironolactona/química , Coloração e Rotulagem , Acetilação , Aminas/química , Biotina/química , Técnicas Eletroquímicas/métodos , Oxirredução , Piperazinas/química , Coloração e Rotulagem/métodos
8.
Anal Chem ; 88(6): 3406-12, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26901632

RESUMO

When dealing with trace analysis of complex mixtures, NMR suffers from both low sensitivity and signal overlap. NMR chemosensing, in which the association between an analyte and a receptor is "signaled" by an NMR response, has been proposed as a valuable analytical tool for biofluids and natural extracts. Such chemosensors offer the possibility to simultaneously detect and distinguish different analytes in solution, which makes them particularly suitable for analytical applications on complex mixtures. In this study, we have combined NMR chemosensing with nuclear spin hyperpolarization. This was realized using an iridium complex as a receptor in the presence of parahydrogen: association of the target analytes to the metal center results in approximately 1000-fold enhancement of the NMR response. This amplification allows the detection, identification, and quantification of analytes at low-micromolar concentrations, provided they can weakly associate to the iridium chemosensor. Here, our NMR chemosensing approach was applied to the quantitative determination of several flavor components in methanol extracts of ground coffee.


Assuntos
Produtos Biológicos/química , Espectroscopia de Ressonância Magnética/métodos
9.
Chemistry ; 22(27): 9277-82, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27258850

RESUMO

NMR signal amplification by reversible exchange (SABRE) has been observed for pyridine, methyl nicotinate, N-methylnicotinamide, and nicotinamide in D2 O with the new catalyst [Ir(Cl)(IDEG)(COD)] (IDEG=1,3-bis(3,4,5-tris(diethyleneglycol)benzyl)imidazole-2-ylidene). During the activation and hyperpolarization steps, exclusively D2 O was used, resulting in the first fully biocompatible SABRE system. Hyperpolarized (1) H substrate signals were observed at 42.5 MHz upon pressurizing the solution with parahydrogen at close to the Earth's magnetic field, at concentrations yielding barely detectable thermal signals. Moreover, 42-, 26-, 22-, and 9-fold enhancements were observed for nicotinamide, pyridine, methyl nicotinate, and N-methylnicotinamide, respectively, in conventional 300 MHz studies. This research opens up new opportunities in a field in which SABRE has hitherto primarily been conducted in CD3 OD. This system uses simple hardware, leaves the substrate unaltered, and shows that SABRE is potentially suitable for clinical purposes.


Assuntos
Complexos de Coordenação/química , Óxido de Deutério/química , Irídio/química , Niacinamida/análogos & derivados , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Catálise , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Conformação Molecular , Niacinamida/química , Água/química
10.
Chemistry ; 21(29): 10482-9, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26072737

RESUMO

Signal amplification by reversible exchange (SABRE) is an emerging hyperpolarization method in NMR spectroscopy, in which hyperpolarization is transferred through the scalar coupling network of para-hydrogen derived hydrides in a metal complex to a reversibly bound substrate. Substrates can even be hyperpolarized at concentrations below that of the metal complex by addition of a suitable co-substrate. Here we investigate the catalytic system used for trace detection in NMR spectroscopy with [Ir(IMes)(H)2 (L)3 ](+) (IMes=1,3-dimesitylimidazol-2-ylidene) as catalyst, pyridine as a substrate and 1-methyl-1,2,3-triazole as co-substrate in great detail. With density functional theory (DFT), validated by extended X-ray absorption fine structure (EXAFS) experiments, we provide explanations for the relative abundance of the observed metal complexes, as well as their contribution to SABRE. We have established that the interaction between iridium and ligands cis to IMes is weaker than that with the trans ligand, and that in mixed complexes with pyridine and triazole, the latter preferentially takes up the trans position.

11.
Anal Biochem ; 475: 68-73, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25637680

RESUMO

We present a method for high-yield production of multimilligram amounts of pure single-stranded DNA employing rolling circle amplification (RCA) and processing by restriction enzymes. Pure and homogeneous samples are produced with minimal handling time, reagents, and waste products. The RCA method is more than twice as efficient in dNTP incorporation than conventional polymerase chain reaction in producing end product. The validity and utility of the method are demonstrated in the production of a uniformly (13)C/(15)N-labeled 38-nt cocaine aptamer DNA used in nanosensing devices.


Assuntos
Aptâmeros de Nucleotídeos , DNA de Cadeia Simples , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/isolamento & purificação , Cocaína/análise , DNA de Cadeia Simples/síntese química , DNA de Cadeia Simples/química , DNA de Cadeia Simples/isolamento & purificação
12.
Angew Chem Int Ed Engl ; 54(48): 14527-30, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26437608

RESUMO

Nuclear magnetic resonance is often the technique of choice in chemical analysis because of its sensitivity to molecular structure, quantitative character, and straightforward sample preparation. However, determination of trace analytes in complex mixtures is generally limited by low sensitivity and extensive signal overlap. Here, we present an approach for continuous hyperpolarization at high magnetic field that is based on signal amplification by reversible exchange (SABRE) and can be straightforwardly incorporated in multidimensional NMR experiments. This method was implemented in a 2D correlation experiment that allows detection and quantification of analytes at nanomolar concentration in complex solutions.

13.
Angew Chem Int Ed Engl ; 54(5): 1481-4, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25469822

RESUMO

Signal amplification by reversible exchange (SABRE) is an emerging nuclear spin hyperpolarization technique that strongly enhances NMR signals of small molecules in solution. However, such signal enhancements have never been exploited for concentration determination, as the efficiency of SABRE can strongly vary between different substrates or even between nuclear spins in the same molecule. The first application of SABRE for the quantitative analysis of a complex mixture is now reported. Despite the inherent complexity of the system under investigation, which involves thousands of competing binding equilibria, analytes at concentrations in the low micromolar range could be quantified from single-scan SABRE spectra using a standard-addition approach.

14.
J Am Chem Soc ; 136(7): 2695-8, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24475903

RESUMO

SABRE is a nuclear spin hyperpolarization technique based on the reversible association of a substrate molecule and para-hydrogen (p-H2) to a metal complex. During the lifetime of such a complex, generally fractions of a second, the spin order of p-H2 is transferred to the nuclear spins of the substrate molecule via a transient scalar coupling network, resulting in strongly enhanced NMR signals. This technique is generally applied at relatively high concentrations (mM), in large excess of substrate with respect to metal complex. Dilution of substrate ligands below stoichiometry results in progressive decrease of signal enhancement, which precludes the direct application of SABRE to the NMR analysis of low concentration (µM) solutions. Here, we show that the efficiency of SABRE at low substrate concentrations can be restored by addition of a suitable coordinating ligand to the solution. The proposed method allowed NMR detection below 1 µM in a single scan.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Hidrogênio/química , Ligantes , Metais/química , Temperatura
15.
Nucleic Acids Res ; 40(13): e102, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22457065

RESUMO

In the past decades, RNA molecules have emerged as important players in numerous cellular processes. To understand these processes at the molecular and atomic level, large amounts of homogeneous RNA are required for structural, biochemical and pharmacological investigations. Such RNAs are generally obtained from laborious and costly in vitro transcriptions or chemical synthesis. In 2007, a recombinant RNA technology has been described for the constitutive production of large amounts of recombinant RNA in Escherichia coli using a tRNA-scaffold approach. We demonstrate a general applicable extension to the described approach by introducing the following improvements: (i) enhanced transcription of large recombinant RNAs by T7 RNA polymerase (high transcription rates, versatile), (ii) efficient and facile excision of the RNA of interest from the tRNA-scaffold by dual cis-acting hammerhead ribozyme mediated cleavage and (iii) rapid purification of the RNA of interest employing anion-exchange chromatography or affinity chromatography followed by denaturing polyacrylamide gel electrophoresis. These improvements in the existing method pave the tRNA-scaffold approach further such that any (non-)structured product RNA of a defined length can cost-efficiently be obtained in (multi-)milligram quantities without in vitro enzymatic manipulations.


Assuntos
RNA/biossíntese , RNA Polimerases Dirigidas por DNA/metabolismo , Técnicas Genéticas , Vetores Genéticos , Ressonância Magnética Nuclear Biomolecular , RNA/química , RNA/isolamento & purificação , RNA Catalítico/metabolismo , RNA de Transferência de Lisina/metabolismo , Proteínas Virais/metabolismo
16.
Biochemistry ; 52(5): 773-85, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23339280

RESUMO

Expansions of (CTG)·(CAG) repeated DNAs are the mutagenic cause of 14 neurological diseases, likely arising through the formation and processing of slipped-strand DNAs. These transient intermediates of repeat length mutations are formed by out-of-register mispairing of repeat units on complementary strands. The three-way slipped-DNA junction, at which the excess repeats slip out from the duplex, is a poorly understood feature common to these mutagenic intermediates. Here, we reveal that slipped junctions can assume a surprising number of interconverting conformations where the strand opposite the slip-out either is fully base paired or has one or two unpaired nucleotides. These unpaired nucleotides can also arise opposite either of the nonslipped junction arms. Junction conformation can affect binding by various structure-specific DNA repair proteins and can also alter correct nick-directed repair levels. Junctions that have the potential to contain unpaired nucleotides are repaired with a significantly higher efficiency than constrained fully paired junctions. Surprisingly, certain junction conformations are aberrantly repaired to expansion mutations: misdirection of repair to the non-nicked strand opposite the slip-out leads to integration of the excess slipped-out repeats rather than their excision. Thus, slipped-junction structure can determine whether repair attempts lead to correction or expansion mutations.


Assuntos
Reparo do DNA , DNA/química , DNA/metabolismo , Repetições de Trinucleotídeos , Pareamento de Bases , Sequência de Bases , DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteína HMGB1/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo
17.
J Biomol NMR ; 56(2): 95-112, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23564038

RESUMO

We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Prótons , Ressonância Magnética Nuclear Biomolecular/métodos , RNA/química
18.
Food Chem ; 420: 136094, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062082

RESUMO

1H NMR analysis of organic extracts of honey is a powerful technique to confirm its botanical origin, thanks to the presence of signals that are specific to each floral typology. Similarly, signals from bee metabolites provide an important tool to verify honey entomological origin. Here, we present a method for honey screening that does not require any detailed analysis of the NMR spectrum for the detection and quantification of such markers. Our approach is based on the measurement of two spectral parameters, named entomological factor (EF) and aromatic factor (AF), calculated by integration of well-defined regions of the NMR spectrum. The values of EF and AF can reveal direct or indirect dilution of honey with sugar syrups. This method was tested on honeys of different floral origins and could identify all adulterated samples previously recognized by official techniques. Notably, several samples found compliant by official methods were proven non-genuine by the proposed approach.


Assuntos
Mel , Abelhas , Animais , Mel/análise , Espectroscopia de Ressonância Magnética/métodos , Açúcares/análise , Açúcares/química
20.
J Am Chem Soc ; 133(42): 16754-7, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21962225

RESUMO

Several techniques rely on electron-nuclear interactions to boost the polarization of nuclear spins in the solid phase. Averaging out of anisotropic interactions as a result of molecular tumbling strongly reduces the applicability of such hyperpolarization approaches in liquids. Here we show for the first time that anisotropic electron-nuclear interactions in solution can survive sufficiently long to generate nuclear spin polarization by the solid-state photo-CIDNP mechanism. A 10,000-fold NMR signal increase in solution was observed for a giant biomolecular complex of a photosynthetic membrane protein with a tumbling correlation time in the submicrosecond regime, corresponding to a molecular weight close to 1 MDa.


Assuntos
Luz , Proteínas de Membrana/química , Dimetilaminas/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Rhodobacter sphaeroides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA