Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1945): 20202726, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33593180

RESUMO

Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming flows are slow. To investigate what other thrust-generating mechanisms occur during this behaviour, we used the robotic system termed Tunabot Flex, which is a research platform featuring yellowfin tuna-inspired body and tail profiles. We generated linear accelerations from rest of various magnitudes (maximum acceleration of [Formula: see text] at [Formula: see text] tail beat frequency) and recorded instantaneous electrical power consumption. Using particle image velocimetry data, we quantified body kinematics and flow patterns to then compute surface pressures, thrust forces and mechanical power output along the body through time. We found that the head generates net drag and that the posterior body generates significant thrust, which reveals an additional propulsion mechanism to the lift-based caudal fin in this thunniform swimmer during linear accelerations from rest. Studying fish acceleration performance with an experimental platform capable of simultaneously measuring electrical power consumption, kinematics, fluid flow and mechanical power output provides a new opportunity to understand unsteady locomotor behaviours in both fishes and bioinspired aquatic robotic systems.


Assuntos
Hidrodinâmica , Robótica , Aceleração , Fenômenos Biomecânicos , Natação
2.
J Exp Biol ; 223(Pt 16)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32616548

RESUMO

Whereas many fishes swim steadily, zebrafish regularly exhibit unsteady burst-and-coast swimming, which is characterized by repeated sequences of turns followed by gliding periods. Such a behavior offers the opportunity to investigate the hypothesis that negative mechanical work occurs in posterior regions of the body during early phases of the turn near the time of maximal body curvature. Here, we used a modified particle image velocimetry (PIV) technique to obtain high-resolution flow fields around the zebrafish body during turns. Using detailed swimming kinematics coupled with body surface pressure computations, we estimated fluid-structure interaction forces and the pattern of forces and torques along the body during turning. We then calculated the mechanical work done by each body segment. We used estimated patterns of positive and negative work along the body to evaluate the hypothesis (based on fish midline kinematics) that the posterior body region would experience predominantly negative work. Between 10% and 20% of the total mechanical work was done by the fluid on the body (negative work), and negative work was concentrated in the anterior and middle areas of the body, not along the caudal region. Energetic costs of turning were calculated by considering the sum of positive and negative work and were compared with previous metabolic estimates of turning energetics in fishes. The analytical workflow presented here provides a rigorous way to quantify hydrodynamic mechanisms of fish locomotion and facilitates the understanding of how body kinematics generate locomotor forces in freely swimming fishes.


Assuntos
Natação , Peixe-Zebra , Animais , Fenômenos Biomecânicos , Locomoção , Reologia
3.
Elife ; 122023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744863

RESUMO

Schooling in fish is linked to a number of factors such as increased foraging success, predator avoidance, and social interactions. In addition, a prevailing hypothesis is that swimming in groups provides energetic benefits through hydrodynamic interactions. Thrust wakes are frequently occurring flow structures in fish schools as they are shed behind swimming fish. Despite increased flow speeds in these wakes, recent modeling work has suggested that swimming directly in-line behind an individual may lead to increased efficiency. However, only limited data are available on live fish interacting with thrust wakes. Here we designed a controlled experiment in which brook trout, Salvelinus fontinalis, interact with thrust wakes generated by a robotic mechanism that produces a fish-like wake. We show that trout swim in thrust wakes, reduce their tail-beat frequencies, and synchronize with the robotic flapping mechanism. Our flow and pressure field analysis revealed that the trout are interacting with oncoming vortices and that they exhibit reduced pressure drag at the head compared to swimming in isolation. Together, these experiments suggest that trout swim energetically more efficiently in thrust wakes and support the hypothesis that swimming in the wake of one another is an advantageous strategy to save energy in a school.


Some species of fish swim together in groups known as schools. This behaviour makes it easier to find food, avoid predators, and maintain social interactions. In addition, biologists also think that being in a group reduces the energy needed to swim compared to being alone. Similar to the tracks that follow ships moving through water, fish also leave a wake behind them as they swim. By flapping their tail side-to-side, they create characteristic patterns in the water, including swirling currents. Fish in a school encounter many of these wakes from their neighbours, and may use this to position themselves relative to each other. Previous studies have suggested that swimming directly behind each other increases swimming efficiency; however, this was based on computer models and experiments on flapping systems rather than real-life settings. To better understand how swimming in a line works in practice, Thandiackal and Lauder tested this idea in live fish. A robotic flapping foil designed to imitate the tail fin of a leading fish was placed in front of a single trout swimming in a tank with flowing water. The fish positioned itself directly behind the foil and timed its own flapping to match it. The trout also interacted with the swirling currents, which Thandiackal and Lauder calculated helped reduce the resistance from the water flow. These results suggest that swimming directly behind each other can improve swimming efficiency, complementing previous studies showing the benefits of other formations, such as swimming side-by-side. This suggests that fish in schools may have many opportunities to save energy. In the future, this improved understanding could help to design underwater vehicles that work more efficiently in groups.


Assuntos
Procedimentos Cirúrgicos Robóticos , Natação , Animais , Fenômenos Biomecânicos , Fenômenos Físicos , Hidrodinâmica , Peixes
4.
Sci Robot ; 6(57)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380756

RESUMO

Undulatory swimming represents an ideal behavior to investigate locomotion control and the role of the underlying central and peripheral components in the spinal cord. Many vertebrate swimmers have central pattern generators and local pressure-sensitive receptors that provide information about the surrounding fluid. However, it remains difficult to study experimentally how these sensors influence motor commands in these animals. Here, using a specifically designed robot that captures the essential components of the animal neuromechanical system and using simulations, we tested the hypothesis that sensed hydrodynamic pressure forces can entrain body actuation through local feedback loops. We found evidence that this peripheral mechanism leads to self-organized undulatory swimming by providing intersegmental coordination and body oscillations. Swimming can be redundantly induced by central mechanisms, and we show that, therefore, a combination of both central and peripheral mechanisms offers a higher robustness against neural disruptions than any of them alone, which potentially explains how some vertebrates retain locomotor capabilities after spinal cord lesions. These results broaden our understanding of animal locomotion and expand our knowledge for the design of robust and modular robots that physically interact with the environment.

5.
Nat Commun ; 8: 14494, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211509

RESUMO

To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact.


Assuntos
Drosophila melanogaster/fisiologia , Marcha/fisiologia , Locomoção/fisiologia , Adesividade , Animais , Extremidades/fisiologia , Modelos Animais , Robótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA