RESUMO
Powassan virus is a tickborne flavivirus that can cause lethal or debilitating neurologic illness. It is canonically transmitted by Ixodes spp. ticks but might spill over to sympatric Dermacentor species. We detected Powassan virus lineage I from a pool of field-collected D. variabilis ticks in New York, USA.
Assuntos
Dermacentor , Vírus da Encefalite Transmitidos por Carrapatos , Ixodes , Animais , Vírus da Encefalite Transmitidos por Carrapatos/genética , New YorkRESUMO
The presence of bottlenecks in the transmission cycle of many RNA viruses leads to a severe reduction of number of virus particles and this occurs multiple times throughout the viral transmission cycle. Viral replication is then necessary for regeneration of a diverse mutant swarm. It is now understood that any perturbation of the mutation frequency either by increasing or decreasing the accumulation of mutations in an RNA virus results in attenuation of the virus. To determine if altering the rate at which a virus accumulates mutations decreases the probability of a successful virus infection due to issues traversing host bottlenecks, a series of mutations in the RNA-dependent RNA polymerase of Venezuelan equine encephalitis virus (VEEV), strain 68U201, were tested for mutation rate changes. All RdRp mutants were attenuated in both the mosquito and vertebrate hosts, while showing no attenuation during in vitro infections. The rescued viruses containing these mutations showed some evidence of change in fidelity, but the phenotype was not sustained following passaging. However, these mutants did exhibit changes in the frequency of specific types of mutations. Using a model of mutation production, these changes were shown to decrease the number of stop codons generated during virus replication. This suggests that the observed mutant attenuation in vivo may be due to an increase in the number of unfit genomes, which may be normally selected against by the accumulation of stop codons. Lastly, the ability of these attenuated viruses to transition through a bottleneck in vivo was measured using marked virus clones. The attenuated viruses showed an overall reduction in the number of marked clones for both the mosquito and vertebrate hosts, as well as a reduced ability to overcome the known bottlenecks in the mosquito. This study demonstrates that any perturbation of the optimal mutation frequency whether through changes in fidelity or by alterations in the mutation frequency of specific nucleotides, has significant deleterious effects on the virus, especially in the presence of host bottlenecks.
Assuntos
Culicidae/virologia , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/virologia , Mutação , RNA Polimerase Dependente de RNA/genética , Vertebrados/virologia , Replicação Viral/genética , Animais , Culicidae/genética , Vírus da Encefalite Equina Venezuelana/fisiologia , Fenótipo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Vertebrados/genéticaRESUMO
Ticks are the primary vector of arboviruses in temperate climates worldwide. They are both the vector of these pathogens to humans and an integral component of the viral sylvatic cycle. Understanding the tick-pathogen interaction provides information about the natural maintenance of these pathogens and informs the development of countermeasures against human infection. In this review, we discuss currently available information on tick-viral interactions within the broader scope of general tick immunology. While the tick immune response to several pathogens has been studied extensively, minimal work centres on responses to viral infection. This is largely due to the high pathogenicity of tick-borne viruses; this necessitates high-containment laboratories or low-pathogenicity substitute viruses. This has biased most research towards tick-borne flaviviruses. More work is required to fully understand the role of tick-virus interaction in sylvatic cycling and transmission of diverse tick-borne viruses.
Assuntos
Carrapatos/fisiologia , Fenômenos Fisiológicos Virais/imunologia , Vírus/classificação , Animais , Bunyaviridae/fisiologia , Flaviviridae/fisiologia , Humanos , Imunidade Inata/fisiologia , Orthomyxoviridae/fisiologia , Interferência de RNA/fisiologia , Reoviridae/fisiologia , Carrapatos/genética , Carrapatos/imunologia , Fenômenos Fisiológicos Virais/genéticaRESUMO
Zika virus has recently spread throughout the Americas. Although Aedes aegypti mosquitoes are considered the primary vector, Culex quinquefasciatus and mosquitoes of other species may also be vectors. We tested Cx. quinquefasciatus and Ae. taeniorhynchus mosquitoes from the US Gulf Coast; both were refractory to infection and incapable of transmission.
Assuntos
Aedes/virologia , Culex/virologia , Insetos Vetores/virologia , Zika virus/fisiologia , Animais , Transmissão de Doença Infecciosa , Estados UnidosRESUMO
UNLABELLED: Powassan virus (POWV) is an encephalitic tick-borne flavivirus which can result in serious neuroinvasive disease with up to a 10% case fatality rate. The study objective was to determine whether the salivary gland extract (SGE) from Ixodes scapularis ticks facilitates the transmission and dissemination of POWV in a process known as saliva-activated transmission. Groups of BALB/c mice were footpad inoculated with either a high dose of POWV with and without SGE or a low dose of POWV with and without SGE. Mice from each group were sacrificed daily. Organ viral loads and gene expression profiles were evaluated by quantitative real-time PCR. Both groups of mice infected with high-dose POWV showed severe neurological signs of disease preceding death. The presence of SGE did not affect POWV transmission or disease outcome for mice infected with the high dose of POWV. Neuroinvasion, paralysis, and death occurred for all mice infected with the low dose of POWV plus SGE; however, for mice infected with the low dose of POWV in the absence of SGE, there were no clinical signs of infection and no mice succumbed to disease. Although this group displayed low-level viremias, all mice were completely healthy, and it was the only group in which POWV was cleared from the lymph nodes. We conclude that saliva-activated transmission occurs in mice infected with a low dose of POWV. Our study is the first to demonstrate virus dose-dependent saliva-activated transmission, warranting further investigation of the specific salivary factors responsible for enhancing POWV transmission. IMPORTANCE: Powassan virus (POWV) is a tick-borne flavivirus that continues to emerge in the United States, as is evident by the surge in number and expanding geographic range of confirmed cases in the past decade. This neuroinvasive virus is transmitted to humans by infected tick bites. Successful tick feeding is facilitated by a collection of pharmacologically active factors in tick saliva. In a process known as saliva-activated transmission, tick bioactive salivary molecules are thought to modulate the host environment, making it more favorable for the transmission and establishment of a pathogen. This phenomenon has been demonstrated for several tick-borne pathogens; however, a systematic investigation of the role of tick saliva on dissemination and pathogenesis of a tick-borne viral disease has never been attempted before. This study will fill that gap by systematically examining whether the presence of tick saliva contributes to the transmission and dissemination of POWV in mice.
Assuntos
Vetores Aracnídeos/virologia , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Ixodes/virologia , Saliva/virologia , Animais , Progressão da Doença , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/mortalidade , Encefalite Transmitida por Carrapatos/patologia , Encefalite Transmitida por Carrapatos/transmissão , Feminino , Humanos , Linfonodos/patologia , Linfonodos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Saliva/química , Estados Unidos , VirulênciaRESUMO
Introduction: SARS coronavirus 2 (SARS-CoV-2) infects human angiotensin-converting enzyme 2 (hACE2)-expressing lung epithelial cells through its spike (S) protein. The S protein is highly glycosylated and could be a target for lectins. Surfactant protein A (SP-A) is a collagen-containing C-type lectin, expressed by mucosal epithelial cells and mediates its antiviral activities by binding to viral glycoproteins. Objective: This study examined the mechanistic role of human SP-A in SARS-CoV-2 infectivity and lung injury in vitro and in vivo. Results: Human SP-A can bind both SARS-CoV-2 S protein and hACE2 in a dose-dependent manner (p<0.01). Pre-incubation of SARS-CoV-2 (Delta) with human SP-A inhibited virus binding and entry and reduced viral load in human lung epithelial cells, evidenced by the dose-dependent decrease in viral RNA, nucleocapsid protein (NP), and titer (p<0.01). We observed significant weight loss, increased viral burden, and mortality rate, and more severe lung injury in SARS-CoV-2 infected hACE2/SP-A KO mice (SP-A deficient mice with hACE2 transgene) compared to infected hACE2/mSP-A (K18) and hACE2/hSP-A1 (6A2) mice (with both hACE2 and human SP-A1 transgenes) 6 Days Post-infection (DPI). Furthermore, increased SP-A level was observed in the saliva of COVID-19 patients compared to healthy controls (p<0.05), but severe COVID-19 patients had relatively lower SP-A levels than moderate COVID-19 patients (p<0.05). Discussion: Collectively, human SP-A attenuates SARS-CoV-2-induced acute lung injury (ALI) by directly binding to the S protein and hACE2, and inhibiting its infectivity; and SP-A level in the saliva of COVID-19 patients might serve as a biomarker for COVID-19 severity.
Assuntos
Lesão Pulmonar Aguda , COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Lectinas Tipo C , Proteína A Associada a Surfactante Pulmonar/genética , SARS-CoV-2RESUMO
Tick-borne flaviviruses (TBFV) can cause severe neuroinvasive disease which may result in death or long-term neurological deficit in over 50% of survivors. Multiple mechanisms for invasion of the central nervous system (CNS) by flaviviruses have been proposed including axonal transport, transcytosis, endothelial infection, and Trojan horse routes. Flaviviruses may utilize different or multiple mechanisms of neuroinvasion depending on the specific virus, infection site, and host variability. In this work we have shown that the infection of BALB/cJ mice with either Powassan virus lineage I (Powassan virus) or lineage II (deer tick virus) results in distinct spatial tropism of infection in the CNS which correlates with unique clinical presentations for each lineage. Comparative transcriptomics of infected brains demonstrates the activation of different immune pathways and downstream host responses. Ultimately, the comparative pathology and transcriptomics are congruent with different clinical signs in a murine model. These results suggest that the different disease presentations occur in clinical cases due to the inherent differences in the two lineages of Powassan virus.
Assuntos
Encéfalo , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Camundongos Endogâmicos BALB C , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/virologia , Encefalite Transmitida por Carrapatos/patologia , Encéfalo/virologia , Encéfalo/patologia , Inflamação/virologia , Modelos Animais de Doenças , Feminino , TranscriptomaRESUMO
COVID-19 remains a significant threat to public health globally. Infection in some susceptible individuals causes life-threatening acute lung injury (ALI/ARDS) and/or death. Human surfactant protein A (SP-A) is a C-type lectin expressed in the lung and other mucosal tissues, and it plays a critical role in host defense against various pathogens. The human SP-A genes ( SFTPA1 and SFTPA2 ) are highly polymorphic and comprise several common genetic variants, i.e., SP-A1 (variants 6A 2 , 6A 4 ) and SP-A2 (variants 1A 0 , 1A 3 ). Here, we elucidated the differential antiviral and immunoregulatory roles of SP-A variants in response to SARS-CoV-2 infection in vivo . Six genetically-modified mouse lines, expressing both hACE2 (SARS-CoV-2 receptor) and individual SP-A variants: (hACE2/6A 2 (6A 2 ), hACE2/6A 4 (6A 4 ), hACE2/1A 0 (1A 0 ), and hACE2/1A 3 (1A 3 ), one SP-A knockout (hACE2/SP-A KO (KO) and one hACE2/mouse SP-A (K18) mice, were challenged intranasally with 10 3 PFU SARS-CoV-2 or saline (Sham). Infected KO and 1A 0 mice had more weight loss and mortality compared to other mouse lines. Relative to other infected mouse lines, a more severe ALI was observed in KO, 1A 0 , and 6A 2 mice. Reduced viral titers were generally observed in the lungs of infected SP-A mice relative to KO mice. Transcriptomic analysis revealed an upregulation in genes that play central roles in immune responses such as MyD88 , Stat3 , IL-18 , and Jak2 in the lungs of KO and 1A 0 mice. However, Mapk1 was significantly downregulated in 6A 2 versus 1A 0 mice. Analysis of biological pathways identified those involved in lung host defense and innate immunity, including pathogen-induced cytokine, NOD1/2, and Trem1 signaling pathways. Consistent with the transcriptomic data, levels of cytokines and chemokines such as G-CSF, IL-6 and IL-1ß were comparatively higher in the lungs and sera of KO and 1A 0 mice with the highest mortality rate. These findings demonstrate that human SP-A variants differentially modulate SARS-CoV-2-induced lung injury and disease severity by differentially inhibiting viral infectivity and regulating immune-related gene expressions.
RESUMO
Chikungunya virus (CHIKV), which induces chikungunya fever and chronic arthralgia, is an emerging public health concern. Safe and efficient vaccination strategies are needed to prevent or mitigate virus-associated acute and chronic morbidities for preparation of future outbreaks. Eilat (EILV)/CHIKV, a chimeric alphavirus which contains the structural proteins of CHIKV and the non-structural proteins of EILV, does not replicate in vertebrate cells. The chimeric virus was previously reported to induce protective adaptive immunity in mice. Here, we assessed the capacity of the virus to induce quick and durable protection in cynomolgus macaques. EILV/CHIKV protected macaques from wild-type (WT) CHIKV infection one year after a single dose vaccination. Transcriptome and in vitro functional analyses reveal that the chimeric virus triggered toll-like receptor signaling and T cell, memory B cell and antibody responses in a dose-dependent manner. Notably, EILV/CHIKV preferentially induced more durable, robust, and broader repertoire of CHIKV-specific T cell responses, compared to a live attenuated CHIKV 181/25 vaccine strain. The insect-based chimeric virus did not cause skin hypersensitivity reactions in guinea pigs sensitized to mosquito bites. Furthermore, EILV/CHIKV induced strong neutralization antibodies and protected cynomolgus macaques from WT CHIKV infection within six days post vaccination. Transcriptome analysis also suggest that the chimeric virus induction of multiple innate immune pathways, including Toll-like receptor signaling, type I IFN and IL-12 signaling, antigen presenting cell activation, and NK receptor signaling. Our findings suggest that EILV/CHIKV is a safe, highly efficacious vaccine, and provides both rapid and long-lasting protection in cynomolgus macaques.
RESUMO
The Aedes aegypti mosquito is a vector of many infectious agents, including flaviviruses such as Zika virus. Components of mosquito saliva have pleomorphic effects on the vertebrate host to enhance blood feeding, and these changes also create a favorable niche for pathogen replication and dissemination. Here, we demonstrate that human CD47, which is known to be involved in various immune processes, interacts with a 34-kilodalton mosquito salivary protein named Nest1. Nest1 is up-regulated in blood-fed female A. aegypti and facilitates Zika virus dissemination in human skin explants. Nest1 has a stronger affinity for CD47 than its natural ligand, signal regulatory protein α, competing for binding at the same interface. The interaction between Nest1 with CD47 suppresses phagocytosis by human macrophages and inhibits proinflammatory responses by white blood cells, thereby suppressing antiviral responses in the skin. This interaction elucidates how an arthropod protein alters the human response to promote arbovirus infectivity.
Assuntos
Aedes , Pele , Zika virus , Aedes/imunologia , Aedes/virologia , Animais , Humanos , Pele/imunologia , Pele/virologia , Zika virus/imunologia , Zika virus/fisiologia , Feminino , Proteínas de Insetos/imunologia , Infecção por Zika virus/imunologia , Proteínas e Peptídeos Salivares/imunologia , Mosquitos Vetores/imunologia , Mosquitos Vetores/virologia , Antígeno CD47RESUMO
Heartland virus was first isolated in 2009 from two patients in Missouri and is transmitted by the Lone Star tick, Amblyomma americanum. To understand disease transmission and pathogenesis, it is necessary to develop an animal model which utilizes the natural route of transmission and manifests in a manner similar to documented human cases. Herein we describe our investigations on identifying A129 mice as the most appropriate small animal model for HRTV pathogenesis that mimics human clinical outcomes. We further investigated the impact of tick saliva in enhancing pathogen transmission and clinical outcomes. Our investigations revealed an increase in viral load in the groups of mice that received both virus and tick salivary gland extract (SGE). Spleens of all infected mice showed extramedullary hematopoiesis (EH), depleted white pulp, and absence of germinal centers. This observation mimics the splenomegaly observed in natural human cases. In the group that received both HRTV and tick SGE, the clinical outcome of HRTV infection was exacerbated compared to HRTV only infection. EH scores and the presence of viral antigens in spleen were higher in mice that received both HRTV and tick SGE. In conclusion, we have developed a small animal model that mimics natural human infection and also demonstrated the impact of tick salivary factors in exacerbating the HRTV infection.
Assuntos
Amblyomma , Viroses , Humanos , Animais , Camundongos , Baço , Modelos AnimaisRESUMO
Heartland virus was first isolated in 2009 from two patients in Missouri and is transmitted by the lone star tick, Amblyomma americanum. To understand disease transmission and pathogenesis, it is necessary to develop an animal model that utilizes the natural transmission route and manifests in a manner similar to documented human cases. Herein we describe our investigations on identifying A129 mice as the most appropriate small animal model for HRTV pathogenesis that mimics human clinical outcomes. We further investigated the impact of tick saliva in enhancing pathogen transmission and clinical outcomes. Our investigations revealed an increase in viral load in the groups of mice that received both virus and tick salivary gland extract (SGE). Spleens of all infected mice showed extramedullary hematopoiesis (EH), depleted white pulp, and absence of germinal centers. This observation mimics the splenomegaly observed in natural human cases. In the group that received both HRTV and tick SGE, the clinical outcome of HRTV infection was exacerbated compared to HRTV-only infection. EH scores and viral antigens in the spleen were higher in mice that received both HRTV and tick SGE. In conclusion, we have developed a small animal model that mimics natural human infection and also demonstrated the impact to tick salivary factors in exacerbating the HRTV infection.
RESUMO
The COVID-19 pandemic severely affected the medical education worldwide. The infection risk for medical students and healthcare personnel who work with COVID-19 positive cadavers or tissues remains unclear. Moreover, COVID-19 positive cadavers have been rejected by medical schools, adversely impacting the continuum of medical education. Herein, the viral genome abundance in tissues from four COVID-19 positive donors before and after embalming were compared. Tissue samples were collected from the lungs, liver, spleen, and brain both pre- and postembalming. The possible presence of infectious COVID-19 was determined by inoculating human tissue homogenates onto a monolayer of human A549-hACE2 cells and observing for cytopathic effects up to 72 h postinoculation. A real- time quantitative reverse transcription polymerase chain reaction was performed to quantify COVID-19 present in culture supernatants. Fully intact viral genome sequence was possible to obtain in samples with higher levels of virus, even several days postmortem. The embalming procedure described above substantially reduces the abundance of viable COVID-19 genomes in all tissues, sometimes even to undetectable levels. However, in some cases, COVID-19 RNA can still be detected, and a cytopathic effect can be seen both pre- and postembalmed tissues. This study suggests that embalmed COVID-19 positive cadavers might be used safely with appropriate precautions followed in gross anatomy laboratories and in clinical and scientific research. Deep lung tissue is the best specimen to test for the virus. If the tests on the lung tissues are negative, there is a very low likelihood that other tissues will show positive results.
Assuntos
Anatomia , COVID-19 , Humanos , SARS-CoV-2 , Embalsamamento/métodos , Pandemias , Anatomia/educação , CadáverRESUMO
SARS coronavirus 2 (SARS-CoV-2) infects human angiotensin-converting enzyme 2 (hACE2)-expressing lung epithelial cells through its spike (S) protein. The S protein is highly glycosylated and could be a target for lectins. Surfactant protein A (SP-A) is a collagen-containing C-type lectin, expressed by mucosal epithelial cells and mediates its antiviral activities by binding to viral glycoproteins. This study examined the mechanistic role of human SP-A in SARS-CoV-2 infectivity. The interactions between human SP-A and SARS-CoV-2 S protein and hACE2 receptor, and SP-A level in COVID-19 patients were assessed by ELISA. The effect of SP-A on SARS-CoV-2 infectivity was analyzed by infecting human lung epithelial cells (A549-ACE2) with pseudoviral particles and infectious SARS-CoV-2 (Delta variant) pre-incubated with SP-A. Virus binding, entry, and infectivity were assessed by RT-qPCR, immunoblotting, and plaque assay. The results showed that human SP-A can bind SARS-CoV-2 S protein/RBD and hACE2 in a dose-dependent manner (p<0.01). Human SP-A inhibited virus binding and entry, and reduce viral load in lung epithelial cells, evidenced by the dose-dependent decrease in viral RNA, nucleocapsid protein, and titer (p<0.01). Increased SP-A level was observed in the saliva of COVID-19 patients compared to healthy controls (p<0.05), but severe COVID-19 patients had relatively lower SP-A levels than moderate COVID-19 patients (p<0.05). Therefore, SP-A plays an important role in mucosal innate immunity against SARS-CoV-2 infectivity by directly binding to the S protein and inhibiting its infectivity in host cells. SP-A level in the saliva of COVID-19 patients might serve as a biomarker for COVID-19 severity.
RESUMO
Powassan virus (POWV) is a tick-borne neuroinvasive flavivirus endemic to North America. It is generally transmitted by the tick, Ixodes scapularis. This species also transmits Borrelia burgdorferi, the causative agent of Lyme disease. Infection with B. burgdorferi can result in arthritis, carditis, and neuroborreliosis. These pathogens experience sylvatic overlap. To determine the risk of human exposure to coinfected ticks, the interactions between POWV and B. burgdorferi are assessed in laboratory-infected I. scapularis. Adult male and female I. scapularis ticks are orally inoculated with either both pathogens, POWV only, B. burgdorferi only, or uninfected media. After twenty-one days, the ticks are dissected, and RNA is extracted from their midguts and salivary glands. In infected midguts, the quantity of POWV in coinfected ticks was elevated compared to those with only POWV. In addition, the salivary glands of ticks with infected midguts had increased POWV dissemination to those with only POWV. RNA sequencing is performed to identify the potential mechanism for this pattern, which varies between the organs. Ixodes scapularis ticks are found to be capable of harboring both POWV and B. burgdorferi with a benefit to POWV replication and dissemination.
Assuntos
Borrelia burgdorferi , Vírus da Encefalite Transmitidos por Carrapatos , Ixodes , Doença de Lyme , Animais , Borrelia burgdorferi/genética , Vírus da Encefalite Transmitidos por Carrapatos/genética , Feminino , Humanos , Masculino , Glândulas SalivaresRESUMO
The study of many arthropod-borne pathogens requires high biosafety considerations, including the use of specialized facilities and equipment for arthropod containment. Mosquito- and tick-borne viruses such as yellow fever, West Nile, and Crimean Congo hemorrhagic fever viruses require facilities that are suitable for housing vertebrates. Multidisciplinary studies that incorporate the vector, vertebrate, and pathogens are essential for a complete understanding of the interactions between these transmission cycle components, especially if they aim to evaluate and model relative susceptibilities of different arthropods and vertebrates to infection and transmission between these. Under laboratory conditions, these studies can be relatively simple, for example, involving colonized arthropods, small animals, and attenuated viruses. Other studies are complex with large animals, high-biocontainment pathogens, and field-collected arthropods. These require a higher level of containment and special design considerations. Both of these types of experiments have their relative merits. A thorough understanding of the issues related to these types of studies and the benefits and drawbacks to using various challenge models will enable the researcher to develop realistic goals for various experiments. This review examines the varied issues that should be considered prior to starting these experiments and covers the basics from the procurement of various arthropods, rearing, high-containment facilities and operational issues specific to work with arthropods, types of infection experiments, and specific issues with arthropod and animal experiments in biosafety levels 3 and 4.
Assuntos
Artrópodes , Animais , Contenção de Riscos BiológicosRESUMO
Objectives: We sought to determine the habitat associations and pathogen status of Amblyomma maculatum ticks in New York City (NYC), New York, USA, a newly expanded portion of their range. Methods: We collected 88 ticks from two NYC parks on Staten Island, one of the five boroughs of NYC, and compared our findings with similar habitat in Brooklyn, New York during the same time period (April 30-September 1). We tested 76 for pathogens. Results: We found adult and immature ticks in native and invasive grasses at Freshkills and Brookfield parks on Staten Island. No A. maculatum ticks were found in Brooklyn. 52.6% of ticks tested were infected with Rickettsia parkeri-the etiological agent of R. parkeri rickettsiosis. Conclusions: This high rate of R. parkeri in a dense urban center is of concern to the medical community, who should be aware of this species' presence and the symptoms of R. parkeri rickettsiosis.
Assuntos
Ixodidae , Infecções por Rickettsia , Rickettsia , Carrapatos , Amblyomma , Animais , Ixodidae/microbiologia , Cidade de Nova Iorque/epidemiologia , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/veterináriaRESUMO
Ticks transmit several arthropod-borne pathogens in New York State. The primary human-biting ticks in this region are Ixodes scapularis, Amblyomma americanum, and Dermacentor variabilis. Body regions where tick bites human vary depending on the tick species and life stage, and clothing worn by the host. A community tick submission system was used to acquire information about bite-site location prior to pathogen testing to understand species and life stage-specific body-segment preferences. These data resulted in the identification of species-specific preferences for location, with D. variabilis preferentially biting the head and neck and A. americanum preferring the thighs, groin, and abdomen. Ixodes scapularis was found across the body, although it showed a significant life stage difference with adults preferring the head, midsection, and groin, while nymphs/larvae preferred the extremities. Infection with Borrelia burgdorferi resulted in a significant change in attachment site. This provides an assessment of which body region ticks of the most common species in New York are likely to be found.
Assuntos
Cavidade Abdominal , Artrópodes , Borrelia burgdorferi , Ixodes , Adulto , Animais , Humanos , New YorkRESUMO
Arboviruses such as flaviviruses and alphaviruses cause a significant human healthcare burden on a global scale. Transmission of these viruses occurs during human blood feeding at the mosquito-skin interface. Not only do pathogen immune evasion strategies influence the initial infection and replication of pathogens delivered, but arthropod salivary factors also influence transmission foci. In vitro cell cultures do not provide an adequate environment to study complex interactions between viral, mosquito, and host factors. To address this need for a whole tissue system, we describe a proof of concept model for arbovirus infection using adult human skin ex vivo with Zika virus (flavivirus) and Mayaro virus (alphavirus). Replication of these viruses in human skin was observed up to 4 days after infection. Egressed viruses could be detected in the culture media as well. Antiviral and proinflammatory genes, including chemoattractant chemokines, were expressed in infected tissue. Immunohistochemical analysis showed the presence of virus in the skin tissue 4 days after infection. This model will be useful to further investigate: (i) the immediate molecular mechanisms of arbovirus infection in human skin, and (ii) the influence of arthropod salivary molecules during initial infection of arboviruses in a more physiologically relevant system.
RESUMO
A community engaged passive surveillance program was utilized to acquire ticks and associated information throughout New York state. Ticks were speciated and screened for several tick-borne pathogens. Of these ticks, only I. scapularis was commonly infected with pathogens of human relevance, including B. burgdorferi, B. miyamotoi, A. phagocytophilum, B. microti, and Powassan virus. In addition, the geographic and temporal distribution of tick species and pathogens was determined. This enabled the construction of a powerful visual analytical mapping tool, tickMAP to track the emergence of ticks and tick-borne pathogens in real-time. The public can use this tool to identify hot-spots of disease emergence, clinicians for supportive evidence during differential diagnosis, and researchers to better understand factors influencing the emergence of ticks and tick-borne diseases in New York. Overall, we have created a community-engaged tick surveillance program and an interactive visual analytical tickMAP that other regions could emulate to provide real-time tracking and an early warning for the emergence of tick-borne diseases.