Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8160, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208485

RESUMO

Aedes aegypti, the principal global vector of arboviral diseases and previously considered to oviposit and undergo preimaginal development only in fresh water, has recently been shown to be capable of developing in coastal brackish water containing up to 15 g/L salt. We investigated surface changes in eggs and larval cuticles by atomic force and scanning electron microscopy, and larval susceptibility to two widely-used larvicides, temephos and Bacillus thuringiensis, in brackish water-adapted Ae. aegypti. Compared to freshwater forms, salinity-tolerant Ae. aegypti had rougher and less elastic egg surfaces, eggs that hatched better in brackish water, rougher larval cuticle surfaces, and larvae more resistant to the organophosphate insecticide temephos. Larval cuticle and egg surface changes in salinity-tolerant Ae. aegypti are proposed to respectively contribute to the increased temephos resistance and egg hatchability in brackish water. The findings highlight the importance of extending Aedes vector larval source reduction efforts to brackish water habitats and monitoring the efficacy of larvicides in coastal areas worldwide.


Assuntos
Aedes , Inseticidas , Animais , Temefós , Larva , Salinidade , Mosquitos Vetores , Inseticidas/farmacologia , Resistência a Inseticidas
2.
Nanomaterials (Basel) ; 12(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889621

RESUMO

Perovskite materials are considered as the most alluring successor to the conventional semiconductor materials to fabricate solar cells, light emitting diodes and electronic displays. However, the use of the perovskite semiconductors as a channel material in field effect transistors (FET) are much lower than expected due to the poor performance of the devices. Despite low attention, the perovskite FETs are used in widespread applications on account of their unique opto-electrical properties. This review focuses on the previous works on perovskite FETs which are summarized into tables based on their structures and electrical properties. Further, this review focuses on the applications of perovskite FETs in photodetectors, phototransistors, light emitting FETs and memory devices. Moreover, this review highlights the challenges faced by the perovskite FETs to meet the current standards along with the future directions of these FETs. Overall, the review summarizes all the available information on existing perovskite FET works and their applications reported so far.

3.
Polymers (Basel) ; 11(3)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30960444

RESUMO

In this work, chemical bath-deposited cadmium sulfide (CdS) thin films were employed as an alternative hole-blocking layer for inverted poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells. CdS films were deposited by chemical bath deposition and their thicknesses were successfully controlled by tailoring the deposition time. The influence of the CdS layer thickness on the performance of P3HT:PCBM solar cells was systematically studied. The short circuit current densities and power conversion efficiencies of P3HT:PCBM solar cells strongly increased until the thickness of the CdS layer was increased to ~70 nm. This was attributed to the suppression of the interfacial charge recombination by the CdS layer, which is consistent with the lower dark current found with the increased CdS layer thickness. A further increase of the CdS layer thickness resulted in a lower short circuit current density due to strong absorption of the CdS layer as evidenced by UV-Vis optical studies. Both the fill factor and open circuit voltage of the solar cells with a CdS layer thickness less than ~50 nm were comparatively lower, and this could be attributed to the effect of pin holes in the CdS film, which reduces the series resistance and increases the charge recombination. Under AM 1.5 illumination (100 mW/cm²) conditions, the optimized PCBM:P3HT solar cells with a chemical bath deposited a CdS layer of thickness 70 nm and showed 50% power conversion efficiency enhancement, in comparison with similar solar cells with optimized dense TiO2 of 50 nm thickness prepared by spray pyrolysis.

4.
Biosens Bioelectron ; 130: 408-413, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266423

RESUMO

Easily fabricated random network carbon nanotube field-effect transistors (CNT-FETs) have benefitted from improved separation techniques to deliver CNTs with current formulations providing at least 99% semiconducting tube content. Amongst the most promising applications of this device platform are electronic biosensors, where the network conduction is affected through tethered probes such as aptamers which act as molecular scale electrostatic gates. However, the prevailing assumption that these biosensor devices would be optimized if metallic tubes were entirely eliminated has not been examined. Here, we show that metallic-semiconducting junctions in aptasensors are sensing hotspots and that their impact on sensing is heightened by the CNT network's proximity to percolation. First, we use a biased conducting AFM tip to gate a CNT-FET at the nanoscale and demonstrate that the strongest device response occurs when gating at metallic-semiconducting junctions. Second, we resolve the target sensitivity of an aptasensor as a function of tube density and show heightened sensitivity at densities close to the percolation threshold. We find the strongest sensing response where the 1% of metallic tubes generate a high density of metallic-semiconducting junctions but cannot form a percolated metallic path across the network. These findings highlight the critical role of metallic tubes in CNT-FET biosensor devices and demonstrate that network composition is an important variable to boost the performance of electronic biosensors.


Assuntos
Técnicas Biossensoriais , Metais/química , Nanotubos de Carbono/química , Semicondutores , Desenho de Equipamento , Transistores Eletrônicos
5.
Data Brief ; 21: 276-283, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30364623

RESUMO

This article presents the raw and analyzed data from a set of experiments performed to study the role of junctions on the electrostatic gating of carbon nanotube (CNT) network field effect transistor (FET) aptasensors. It consists of the raw data used for the calculation of junction and bundle densities and describes the calculation of metallic content of the bundles. In addition, the data set consists of the electrical measurement data in a liquid gated environment for 119 different devices with four different CNT densities and summarizes their electrical properties. The data presented in this article are related to research article titled "Metallic-semiconducting junctions create sensing hot-spots in carbon nanotube FET aptasensors near percolation" (doi:10.1016/j.bios.2018.09.021) [1].

6.
Polymers (Basel) ; 9(10)2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-30965770

RESUMO

This work reports the effect of co-sensitization of nanoporous titanium dioxide using Cadmium Sulfide (CdS) and poly(3-hexylthiophene) (P3HT) on the performance of hybrid solar cells. CdS nanolayer with different thicknesses was grown on Titanium Dioxide (TiO2) nanoparticles by chemical bath deposition technique with varying deposition times. Both atomic force microscopy (AFM) and UV⁻Vis⁻NIR spectroscopy measurements of TiO2 electrode sensitized with and without CdS layer confirm that the existence of CdS layer on TiO2 nanoparticles. AFM images of CdS-coated TiO2 nanoparticles show that the surface roughness of the TiO2 nanoparticle samples decreases with increasing CdS deposition times. Current density⁻voltage and external quantum efficiency (EQE) measurements were carried out for corresponding solar cells. Both short circuit current density (JSC) and fill factor were optimized at the CdS deposition time of 12 min. On the other hand, a steady and continuous increment in the open circuit voltage (VOC) was observed with increasing CdS deposition time and increased up to 0.81 V when the deposition time was 24 min. This may be attributed to the increased gradual separation of P3HT and TiO2 phases and their isolation at the interfaces. The higher VOC of 0.81 V was due to the higher built-in voltage at the CdS⁻P3HT interface when compared to that at the TiO2⁻P3HT interface. Optimized nanoporous TiO2 solar cells with CdS and P3HT co-sensitizers showed external quantum efficiency (EQE) of over 40% and 80% at the wavelengths corresponding to strong absorption of the polymer and CdS, respectively. The cells showed an overall average efficiency of over 2.4% under the illumination of 70 mW/cm² at AM 1.5 condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA